Codeforces Round 729(Div.2)C Strange Function 题解

题目大意

f ( i ) f(i) f(i)表示最小的正整数 x x x,满足 x x x不是 i i i的一个除数。
计算 ∑ i = 1 n f ( i ) \sum_{i=1}^{n}f(i) i=1nf(i) m o d mod mod 1 0 9 + 7 10^9+7 109+7

输入描述

第一行包含一个整数 t ( 1 ≤ t ≤ 1 0 4 ) t(1≤t≤10^4) t(1t104),表示测试用例的数量。
每一组测试用例包含一个整数 n ( 1 ≤ n ≤ 1 0 16 ) n(1≤n≤10^{16}) n(1n1016)

输出描述

对每组测试用例,输出一个整数 a n s ans ans,满足 a n s = ∑ i = 1 n f ( i ) ans=\sum_{i=1}^{n}f(i) ans=i=1nf(i) m o d mod mod 1 0 9 + 7 10^9+7 109+7

样例输入

6
1
2
3
4
10
10000000000000000

样例输出

2
5
7
10
26
366580019

思路

先考虑 f ( i ) = x f(i)=x f(i)=x的意义。由于 1 , 2 , 3 , … , x − 1 1,2,3,…,x-1 1,2,3,,x1都是 i i i的因子,故 1 , 2 , 3 , … , x − 1 1,2,3,…,x-1 1,2,3,,x1的最小公倍数 L C M ( 1 , 2 , 3 , … , x − 1 ) LCM(1,2,3,…,x-1) LCM(1,2,3,,x1)也一定是 i i i的因子,而 L C M ( 1 , 2 , 3 , … , x ) LCM(1,2,3,…,x) LCM(1,2,3,,x)一定不是 i i i的因子。我们得到结论: i ≥ L C M ( 1 , 2 , 3 , … , x − 1 ) i≥LCM(1,2,3,…,x-1) iLCM(1,2,3,,x1)。已知 i ≤ 1 0 16 i≤10^{16} i1016,因此 L C M ( 1 , 2 , 3 , … , x − 1 ) ≤ i ≤ 1 0 16 LCM(1,2,3,…,x-1)≤i≤10^{16} LCM(1,2,3,,x1)i1016,这样 x x x的取值上界得以确定。

l c m lcm lcm函数中,涉及到两个数相乘的操作,我们判断一下会不会超过 l o n g long long l o n g long long。设 a a a为累计的 l c m lcm lcm b b b为当前要求 l c m lcm lcm的数,已经限定 a ≤ 1 0 16 a≤10^{16} a1016,则 b ≤ 100 b≤100 b100 100 100 100以内的质数有 25 25 25个,不考虑 2 , 3 , 5 , 7 2,3,5,7 2,3,5,7,有 21 21 21个,只考虑质数则它们的 l c m lcm lcm也超过了 1 0 21 10^{21} 1021,因此 b b b不可能超过 100 100 100。所以我们只需要枚举不到 100 100 100个数就可以确定 x x x的取值上界。实际上取值上界的值为 42 42 42

由于要计算 ∑ i = 1 n f ( i ) \sum_{i=1}^{n}f(i) i=1nf(i) ,我们单独考虑取值上界下的每一个值 x x x,并考虑在累加过程中不同的 x x x出现的次数。在 1 1 1~ n n n中,能整除 L C M ( 1 , 2 , 3 , … , x − 1 ) LCM(1,2,3,…,x-1) LCM(1,2,3,,x1)的显然有 ⌊ n L C M ( 1 , 2 , 3 , … , x − 1 ) ⌋ ⌊\frac{n}{LCM(1,2,3,…,x-1)}⌋ LCM(1,2,3,,x1)n个,能整除 L C M ( 1 , 2 , 3 , … , x ) LCM(1,2,3,…,x) LCM(1,2,3,,x)的显然有 ⌊ n L C M ( 1 , 2 , 3 , … , x ) ⌋ ⌊\frac{n}{LCM(1,2,3,…,x)}⌋ LCM(1,2,3,,x)n个。由于 L C M ( 1 , 2 , 3 , … , x − 1 ) LCM(1,2,3,…,x-1) LCM(1,2,3,,x1) L C M ( 1 , 2 , 3 , … , x ) LCM(1,2,3,…,x) LCM(1,2,3,,x)的因子,记集合 U U U为{ 1 , 2 , 3 , … , n 1,2,3,…,n 1,2,3,,n},集合 A A A U U U中所有能整除 L C M ( 1 , 2 , 3 , … , x − 1 ) LCM(1,2,3,…,x-1) LCM(1,2,3,,x1)的数,集合 B B B U U U中所有能整除 L C M ( 1 , 2 , 3 , … , x ) LCM(1,2,3,…,x) LCM(1,2,3,,x)的数,则 B ⊆ A B⊆A BA。在 V e n n Venn Venn图中我们要求 A ∩ ∁ U B A\cap\complement_{U}B AUB,发现答案为 ∁ A B \complement_{A}B AB。则 ∑ i = 1 n f ( i ) = ∑ x = 2 42 ( x × ( ⌊ n L C M ( 1 , 2 , 3 , … , x − 1 ) ⌋ − ⌊ n L C M ( 1 , 2 , 3 , … , x ) ⌋ ) ) \sum_{i=1}^{n}f(i)=\sum_{x=2}^{42}(x×(⌊\frac{n}{LCM(1,2,3,…,x-1)}⌋-⌊\frac{n}{LCM(1,2,3,…,x)}⌋)) i=1nf(i)=x=242(x×(LCM(1,2,3,,x1)nLCM(1,2,3,,x)n))

考点

最小公倍数的性质
容斥原理的应用

AC代码

#include<iostream>
#define int long long
using namespace std;
const int mod = 1e9 + 7;
const int maxn = 105;
int T, n, ans, LCM[maxn];
inline int gcd(int a, int b) {
	return b == 0 ? a : gcd(b, a%b);
}
int lcm(int a, int b) {
	return a*b / gcd(a, b);
}
void init() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	cin >> T;
}
int get_imax(int upp, int i) {
	for (; upp <= 1e16; i++)upp = lcm(upp, i);
	return i;
}
signed main()
{
	init();
	int imax = get_imax(1, 2);
	LCM[1] = 1;
	for (int i = 2; i <= imax; i++) {
		LCM[i] = lcm(LCM[i - 1], i);
	}
	while (T--) {
		cin >> n;
		ans = 0;
		for (int i = 2; n >= LCM[i - 1]; i++) {
			ans = (ans + i*((n / LCM[i - 1] - n / LCM[i]) % mod)) % mod;
		}
		cout << ans << endl;
	}
    return 0;
}

心得

做出这道题目,不仅要推导数学公式,还要考虑模域。由于题目限定了取值范围,因此求最小公倍数时乘积不会越界,不用取模。直到最后计算答案时再取模,这样就避免了除法取模,否则还要再去求逆元,会非常麻烦。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

keguaiguai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值