poj 2156 Minimum Cost 多次最大流最小费

74 篇文章 0 订阅
#include<stdio.h>
#include<string.h>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
const int N=8024;
const int inf=0x7fffffff;
struct Edge
{
    int from,to,cap,flow,cost;
};
vector<Edge>edges;
vector<int>G[N];
int n,m;
int inq[N],p[N],d[N],a[N];

void AddEdge(int from, int to,int cap, int cost)
{
    Edge tp;
    tp.from=from,tp.to=to,tp.cap=cap,tp.flow=0,tp.cost=cost;
    edges.push_back(tp);

    tp.from=to,tp.to=from,tp.cap=0,tp.flow=0,tp.cost=-cost;
    edges.push_back(tp);

    int g=edges.size();
    G[from].push_back(g-2);
    G[to].push_back(g-1);
}

int BellmanFord(int s,int t,int &flow, int &cost)
{
    int i,j,u;
    for(i=0; i<=n+1; i++) d[i]=inf;
    memset(inq,0,sizeof(inq));
    d[s]=0;
    inq[s]=1;
    p[s]=0;
    a[s]=inf;
    queue<int>Q;
    Q.push(s);
    while(!Q.empty())
    {
        u=Q.front();
        Q.pop();
        inq[u]=0;
        for(i=0; i<G[u].size(); i++)
        {
            Edge &e=edges[G[u][i]];
            if(e.cap>e.flow&&d[e.to]>d[u]+e.cost)
            {
                d[e.to]=d[u]+e.cost;
                p[e.to]=G[u][i];
                a[e.to]=min(a[u],e.cap-e.flow);
                if(!inq[e.to])
                {
                    Q.push(e.to);
                    inq[e.to]=1;
                }
            }
        }
    }
    if(d[t]==inf) return 0;
    flow+=a[t];
    cost+=d[t]*a[t];
    u=t;
    while(u!=0)
    {
        edges[p[u]].flow+=a[t];
        edges[p[u]^1].flow-=a[t];
        u=edges[p[u]].from;
    }
    return 1;
}

int Mincost(int s,int t)
{
    int flow=0,cost=0;
    while(BellmanFord(s,t,flow,cost));
    return cost;
}

int main()
{
    int s,t,flag,i,tn,tm,tk,u,v,c,ans,need[100][50],have[100][50],mp[50][100][100];
    int needs[50],haves[50];
    while(~scanf("%d%d%d",&tn,&tm,&tk))
    {
        if(tn==0&&tm==0&&tk==0) break;
        memset(needs,0,sizeof(needs));
        memset(haves,0,sizeof(haves));
        for(int i=1; i<=tn; i++)
            for(int j=0; j<tk; j++)
            {
                scanf("%d",&need[i][j]);
                needs[j]+=need[i][j];
            }

        for(int i=1; i<=tm; i++)
            for(int j=0; j<tk; j++)
            {
                scanf("%d",&have[i][j]);
                haves[j]+=have[i][j];
            }

        for(int pt=0; pt<tk; pt++)
            for(int i=1; i<=tn; i++)
                for(int j=1; j<=tm; j++)
                    scanf("%d",&mp[pt][i][j]);

        flag=1;
        for(int j=0; j<tk; j++)
        {
            if(needs[j]>haves[j]) flag=0;
        }

        if(!flag)
        {
            printf("-1\n");
        }
        else
        {
            n=tn+tm+2;
            s=0;
            t=tn+tm+1;
            ans=0;
            for(int pt=0; pt<tk; pt++)
            {
                edges.clear();
                for(int i=0; i<N; i++)
                    G[i].clear();

                for(int i=1; i<=tn; i++)
                    AddEdge(s,i,need[i][pt],0);
                for(int i=1; i<=tn; i++)
                    for(int j=1; j<=tm; j++)
                        AddEdge(i,tn+j,need[i][pt],mp[pt][i][j]);

                for(int i=1; i<=tm; i++)
                    AddEdge(tn+i,t,have[i][pt],0);
                ans+=Mincost(s,t);
            }
            printf("%d\n",ans);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值