[b]原文没有提供数据,所以就在网上随便找了个数据进行测试,地址如下:
http://www.sasenterpriseminer.com/data/htwt.xls
该数据包含4个变量(性别sex,年龄age,身高height,体重weight),共237个观测[/b]
结果:
[table]
|变量 标签 N 均值 标准偏差 最小值 最大值
|
|age age 237 16.4430380 1.8425767 13.9000000 25.0000
http://www.sasenterpriseminer.com/data/htwt.xls
该数据包含4个变量(性别sex,年龄age,身高height,体重weight),共237个观测[/b]
语法:
proc means <option(s)> <statistic-keyword(s)>;
by <descending> variable(s);
class variable(s) <option(s)>;
freq variable;
id variable(s);
output <out = dataset> <output-specification(s)>;
types request(s);
var variable(s);
ways list;
weight variable;
直接运行 proc means过程时,会对所有数值型变量进行操作,得到各变量的非缺失观测数N,均值MEAN,标准差STD DEV,最大值Max和最小值Min。
proc means data =Htwt;
run;
结果:
[table]
|变量 标签 N 均值 标准偏差 最小值 最大值
|
|age age 237 16.4430380 1.8425767 13.9000000 25.0000

本文通过实例介绍了SAS的Proc Means过程,利用htwt.xls数据集展示如何计算均值、标准偏差、极差等统计量,并进行分组分析。通过Class选项进行变量分组,Out选项输出结果数据集,Types选择特定_type_输出,以及T检验验证height均值与特定值的差异。
最低0.47元/天 解锁文章

4万+

被折叠的 条评论
为什么被折叠?



