树和二叉树

一.数的逻辑结构

1.       在树中将数据元素称为结点。

树:nn0)个结点的有限集合。

2.       树的基本术语:

    结点的度:结点所拥有的子树的个数。

    树的度:树中各结点度的最大值。

    叶子结点:度为0的结点,也称为终端结点。

 分支结点:度不为0的结点,也称为非终端结点。

   孩子、双亲:树中某结点子树的根结点称为这个结点的孩子结点,这个结点称为它孩子结点的双亲结点;

 兄弟:具有同一个双亲的孩子结点互称为兄弟。

  路径上经过的边的个数称为路径长度。

  祖先、子孙:在树中,如果有一条路径从结点x到结点y,则x称为y的祖先,而y称为x的子孙。

    结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。

 树的深度:树中所有结点的最大层数,也称高度。

   层序编号:将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。

   有序树、无序树:如果一棵树中结点的各子树从左到右是有次序的,称这棵树为有序树;反之,称为无序树。

   森林:m (m0)棵互不相交的树的集合。

3.       树的遍历操作

  树的遍历:从根结点出发,按照某种次序访问树中所有结点,使得每个结点被访问一次且仅被访问一次。

树的前序遍历操作定义为:

若树为空,则空操作返回;否则

访问根结点;

按照从左到右的顺序前序遍历根结点的每一棵子树

树的后序遍历操作定义为:

若树为空,则空操作返回;否则

按照从左到右的顺序后序遍历根结点的每一棵子树;

访问根结点。

树的层序遍历操作定义为:

从树的第一层(即根结点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。

二.数的存储结构

1.       双亲表示法:

  基本思想:用一维数组来存储树的各个结点(一般按层序存储),数组中的一个元素对应树中的一个结点,包括结点的数据信息以及该结点的双亲在数组中的下标。

template <class DataType>

struct PNode

{

    DataType data;    //数据域

    int parent;          //指针域,双亲在数组中的下标

} ;

2.       孩子表示法:

多重链表表示法

孩子链表表示法

双亲孩子表示法

孩子兄弟表示法

三.二叉树的逻辑结构

1. 二叉树是n(n0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。

2.二叉树的特点:

 ⑴每个结点最多有两棵子树;

二叉树是有序的,其次序不能任意颠倒。

3.       特殊的二叉树

   所有结点都只有左子树的二叉树称为左斜树;

所有结点都只有右子树的二叉树称为右斜树;

左斜树和右斜树统称为斜树。

满二叉树

在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上。

   满二叉树特点:

    叶子只能出现在最下一层;

只有度为0和度为2的结点。

满二叉树在同样深度的二叉树中结点个数最多

满二叉树在同样深度的二叉树中叶子结点个数最多

完全二叉树:

在满二叉树中,从最后一个结点开始,连续去掉任意个结点,即是一棵完全二叉树。

   完全二叉树特点:

    叶子结点只能出现在最下两层且最下层的叶子结点都集中在二叉树的左面;

 完全二叉树中如果有度为1的结点,只可能有一个,且该结点只有左孩子。

 深度为k的完全二叉树在k-1层上一定是满二叉树。

在同样结点个数的二叉树中,完全二叉树的深度最小。

4.       二叉树的基本性质

 二叉树的第i层上最多有2i-1个结点(i1)。

    一棵深度为k的二叉树中,最多有2k-1个结点,最少有k个结点。

    在一棵二叉树中,如果叶子结点数为n0,度为2的结点数为n2,则有: n0n21

     具有n个结点的完全二叉树的深度为 log2n  +1

    对一棵具有n个结点的完全二叉树中从1开始按层序编号,则对于任意的序号为i1in)的结点(简称为结点i),有:

1)如果i1,则结点i的双亲结点的序号为  i/2;如果i1,则结点i是根结点,无双亲结点。

2)如果2in,则结点i的左孩子的序号为2i

如果2in,则结点i无左孩子。

3)如果2i+1n,则结点i的右孩子的序号为2i+1;如果2i+1n,则结点 i无右孩子。

完全二叉树的基本性质:

对一棵具有n个结点的完全二叉树中从1开始按层序编号,则

 结点i的双亲结点为  i/2

 结点i的左孩子为2i

结点i的右孩子为2i1

5.       二叉树的遍历操作

 

二叉树的遍历是指从根结点出发,按照某种次序访问二叉树中的所有结点,使得每个结点被访问一次且仅被访问一次。

前序(根)遍历

若二叉树为空,则空操作返回;否则:

①访问根结点;

②前序遍历根结点的左子树;

③前序遍历根结点的右子树。

中序(根)遍历

若二叉树为空,则空操作返回;否则:

①中序遍历根结点的左子树;

②访问根结点;

③中序遍历根结点的右子树。

后序(根)遍历

若二叉树为空,则空操作返回;否则:

①后序遍历根结点的左子树;

②后序遍历根结点的右子树。

③访问根结点;

层序遍历

二叉树的层次遍历是指从二叉树的第一层(即根结点)开始,从上至下逐层遍历,在同一层中,则按从左到右的顺序对结点逐个访问

6. 已知一棵二叉树的前序序列和中序序列,构造该二叉树的过程如下:

    根据前序序列的第一个元素建立根结点;

 在中序序列中找到该元素,确定根结点的左右子树的中序序列;

 在前序序列中确定左右子树的前序序列;

 由左子树的前序序列和中序序列建立左子树;

 由右子树的前序序列和中序序列建立右子树。 

7.二叉链表基本思想:令二叉树的每个结点对应一个链表结点,链表结点除了存放与二叉树结点有关的数据信息外,还要设置指示左右孩子的指针。

template <class DataType>

struct BiNode

{

    DataType data;

    BiNode<T> *lchild, *rchild;

};

具有n个结点的二叉链表中,有n+1个空指针。

8.前序遍历递归算法

  template <class DataType>

void BiTree<DataType> :: PreOrder(BiNode<DataType> *bt)

{

    if (bt == NULL)  return;              //递归调用的结束条件

    else {

        cout << bt->data;                    //访问根结点bt的数据域

        PreOrder(bt->lchild);             //前序递归遍历bt的左子树

        PreOrder(bt->rchild);             //前序递归遍历bt的右子树 

    }

}

 中序遍历递归算法

 template <class DataType>

void BiTree<DataType> :: InOrder (BiNode<DataType> *bt)

{

     if (bt == NULL) return;                 //递归调用的结束条件

     else {

         InOrder(bt->lchild);                 //中序递归遍历bt的左子树

         cout << bt->data;                      //访问根结点bt的数据域

         InOrder(bt->rchild);                //中序递归遍历bt的右子树

    }

}

后续遍历递归算法

   template <class DataType>

void BiTree<DataType> :: PostOrder(BiNode<DataType> *bt)

{

     if (bt == NULL) return;                //递归调用的结束条件

     else {

         PostOrder(bt->lchild);              //后序递归遍历bt的左子树

         PostOrder(bt->rchild);             //后序递归遍历bt的右子树

         cout << bt->data;                      //访问根结点bt的数据域

    }

}

层序遍历

  template <class DataType>

void BiTree<DataType> :: LeverOrder( )

{

     front = rear = -1;        //采用顺序队列,并假定不会发生上溢

     if (root == NULL) return;        //二叉树为空,算法结束

     Q[++rear] = root;                      //根指针入队

     while (front != rear)                  //当队列非空时

     {

          q = Q[++front];                    //出队

          cout << q->data;  

          if (q->lchild != NULL)  Q[++rear] = q->lchild;

          if (q->rchild != NULL)  Q[++rear] = q->rchild;

     }

}

9.三叉链表

  在二叉链表的基础上增加了一个指向双亲的指针域。

10.线索链表

  线索:将二叉链表中的空指针域指向前驱结点和后继结点的指针被称为线索;

线索化:使二叉链表中结点的空链域存放其前驱或后继信息的过程称为线索化;

线索链表:加上线索的二叉链表称为线索链表。

11.线索链表的节点结构

  enum flag {Child, Thread};

template  <class DataType>

struct ThrNode

{

     DataType data;

     ThrNode<DataType>  *lchild, *rchild;

     flag ltag, rtag;

};

中序线索链表类的声明

  template <class DataType>

class InThrBiTree

{

public:

    InThrBiTree( );         //构造函数,建立中序线索链表

    ~ InThrBiTree( );      //析构函数,释放各结点的存储空间

    ThrNode *Next(ThrNode<DataType> *p);  //查找p的后继

    void InOrder( );                            //中序遍历线索链表

private:

    ThrNode *root;                             //指向线索链表的头指针

    ThrNode<DataType> *Creat(ThrNode<DataType> *bt);

    void ThrBiTree(ThrNode<DataType> *bt,

                              ThrNode<DataType> *pre); //构造函数调用

};

12.前序遍历的非递归算法

   1.s初始化;

2.循环直到root(p)为空且栈s为空

 2.1 root(p)不空时循环

  2.1.1 输出root(p)->data;

     2.1.2 将指针root(p)的值保存到栈中;

     2.1.3 继续遍历root(p)的左子树

 2.2 如果栈s不空,则

  2.2.1 将栈顶元素弹出至root(p)

  2.2.2 准备遍历root(p)的右子树;

template <class DataType>

void BiTree::PreOrder(BiNode<DataType> *root)

{

     top = -1;      //采用顺序栈,并假定不会发生上溢

     while (root != NULL || top != -1)

     {

         while (root != NULL)

         {

             cout<<root->data;

             s[++top] = root;

             root = root->lchild; 

         }

         if (top != -1) {

             root = s[top--];

             root = root->rchild; 

         }

     }

}

.树森林与二叉树的转换

 1.树转换为二叉树

  ⑴加线——树中所有相邻兄弟之间加一条连线。

⑵去线——对树中的每个结点,只保留它与第一个孩子结点之间的连线,删去它与其它孩子结点之间的连线。

⑶层次调整——以根结点为轴心,将树顺时针转动一定的角度,使之层次分明。

2.森林转换为二叉树

  将森林中的每棵树转换成二叉树;

从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树根结点的右孩子,当所有二叉树连起来后,此时所得到的二叉树就是由森林转换得到的二叉树。

4.       二叉树转换为树或森林

  加线——若某结点x是其双亲y的左孩子,则把结点x的右孩子、右孩子的右孩子、……,都与结点y用线连起来;

去线——删去原二叉树中所有的双亲结点与右孩子结点的连线;

层次调整——整理由⑴、⑵两步所得到的树或森林,使之层次分明。

.哈夫曼树

  哈夫曼树:给定一组具有确定权值的叶子结点,带权路径长度最小的二叉树。

 哈夫曼树的特点:1. 权值越大的叶子结点越靠近根结点,而权值越小的叶子结点越远离根结点。

2. 只有度为0(叶子结点)和度为2(分支结点)的结点,不存在度为1的结点.

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值