1、K-近邻算法
K-近邻算法主要用于处理分类问题,采用测量不同特征之间的距离进行分类。
1.1算法原理
- 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系。
- 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。
- 一般来说,只选择样本数据集中前N个最相似的数据。K一般不大于20,最后,选择k个中出现次数最多的分类,作为新数据的分类。
例如:下图中当K值为3时,预测绿色的点则为红色的类别,当K值选取5时,预测绿色的点则为蓝色的类别。
1.2算法特点
- 优点
精度高、对异常值不敏感、无数据输入假定 - 缺点
计算复杂度高、空间复杂度高 - 适用数据范围
数值型和标称型
1.3建立模型三要素
-
距离度量
特征空间中样本之间的距离是其相似程度的反映。一般算法中用到的距离度量方法是欧式距离。
L p L_{p} Lp距离公式:
L P ( χ i , χ j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_{P}\left ( \chi _{i},\chi _{j} \right )=\left ( \sum_{l =1}^{n}\left | x_{i}^{\left ( l \right )} -x_{j}^{\left ( l \right )}\right |^{p} \right )^{\frac{1}{p}} LP(χi,χj)=(l=1∑n∣∣∣xi(l)−xj(l)∣∣∣p)p1
其中: p ≥ 1 , x i , x j ∈ R n p\geq 1,x_{i},x_{j}\in \mathbb{R}^{n} p≥1,xi,xj∈Rn
1.当 p = 1 p=1 p=1 时,称为曼哈顿距离
L P ( χ i , χ j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L_{P}\left ( \chi _{i},\chi _{j} \right )= \sum_{l =1}^{n}\left | x_{i}^{\left ( l \right )} -x_{j}^{\left ( l \right )}\right | LP(χi,χj)=l=1∑n∣∣∣xi(l)−xj(l)∣∣∣
2.当 p = 2 p=2 p=2 时,称为欧式距离
L 2 ( χ i , χ j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_{2}\left ( \chi _{i},\chi _{j} \right )=\left ( \sum_{l =1}^{n}\left | x_{i}^{\left ( l \right )} -x_{j}^{\left ( l \right )}\right |^{2} \right )^{\frac{1}{2}} L2(χi,χj)=(l=1∑n∣∣∣xi(l)−xj(l)∣∣∣2)21
3.当 p = ∞ p=\infty p=∞ 时,为维度空间中距离最大值
L P ( χ i , χ j ) = max l ∣ x i ( l ) − x j ( l ) ∣ L_{P}\left ( \chi _{i},\chi _{j} \right )= \max_{l}^{}\left | x_{i}^{\left ( l \right )} -x_{j}^{\left ( l \right )}\right | LP(χi,χj)=lmax∣∣∣xi(l)−xj(l)∣∣∣
注:不同距离度量 p p p所确定的最近邻近点是不同的。
-
k值的选择
- 当 k = 1 k=1 k=1时称为最近邻算法,此时将训练实例点中最接近输入实例点A的类别作为A分类类别。
-
k
k
k值的选择会对
k
k
k近邻法的结果产生重大影响。
■如果 k k k值选择较小,则相当于用较小的领域中的训练实例进行预测,“学习”的近似误差会减小。
◇优点:只有与输入实例比较接近的(相似的)训练实例才会对预测结果起作用。
◇缺点:“学习”的估计误差会增大,预测结果会对近邻的实例点非常的敏感。如果近邻的实例点刚好是噪声,预测结果就会出错。即 k k k值的减小意味着整个模型变得复杂,容易发生过拟合。
■如果 k k k值选择较大,则相当于用较大的领域中的训练实例进行预测。
◇优点:可以减少学习的估计预测。
◇缺点:学习的近似误差会增大,与输入实例较远的(不相似的)训练实例也会对预测产生影响,可能会使预测出错。即 k k k值的增大就意味着整体模型变得简单。
■如果 k = N k=N k=N,那么预测的结果只跟训练实例有关,模型将变得无意义。
应用中,通常使用交叉验证的方式选取最优的 k k k值,对比不同 k k k值下的平均误差率,选取最小的一个。
- 分类决策规则
k k k近邻中的分类决策规则通常是多数表决,即由输入实例的 k k k个邻近的训练实例的类别的多数决定,少数服从多数原则。也可以通过距离的远近进行加权投票,距离越近的样本权重越大。
多数表决规则:
设分类的损失函数为0-1的损失函数,分类函数为
f : R n → { c 1 , c 2 , ⋯ , c k } f:R^{n}\rightarrow \left \{ { c_{1}},{ c_{2}},\cdots ,{ c_{k}} \right \} f:Rn→{c1,c2,⋯,ck}
给定的输入实例 x ∈ χ x\in \chi x∈χ,其最邻近的 k k k个训练实例点构成集合 N k ( x ) N_{k}(x) Nk(x)和预测的类别 c j c_{j} cj,那么误分类率为
1 k ∑ x i ∈ N k ( x ) I ( y i ≠ c j ) = 1 − 1 k ∑ x i ∈ N k ( x ) I ( y i = c j ) \frac{1}{k}\sum_{x_{i}\in N_{k}(x)}I(y_{i}\neq c_{j})=1-\frac{1}{k}\sum_{x_{i}\in N_{k}(x)}I(y_{i}= c_{j}) k1xi∈Nk(x)∑I(yi=cj)=1−k1xi∈Nk(x)∑I(yi=cj)
要使误分类率最小即经验风险最小,就要使 ∑ x i ∈ N k ( x ) I ( y i = c j ) \sum_{x_{i}\in N_{k}(x)}I(y_{i}= c_{j}) ∑xi∈Nk(x)I(yi=cj)最大。
以最开始的那张图为例,当K值取3时, c j c_{j} cj属于红色类别的误分类率为 1 − 1 3 ( 1 + 1 ) = 1 3 1-\frac{1}{3}(1+1)=\frac{1}{3} 1−31(1+1)=31, c j c_{j} cj属于蓝色类别的误分类率为 1 − 1 3 ( 1 ) = 2 3 1-\frac{1}{3}(1)=\frac{2}{3} 1−31(1)=32,所以 c j c_{j} cj属于红色类别时误分类率最小。
2、kd树
k近邻中主要考虑的问题是如何对训练数据进行快速k近邻搜索。最简单的实现方式是:线性扫描。当训练集很大是,计算非常耗时,可以考虑使用特殊的结构存储训练数据,常用到方法是使用kd树。
2.1 构造平衡kd树的算法
kd树是二叉树,标识对k维空间的一个划分。构造平衡kd树的算法如下:
■输入:
k
k
k维空间数据集
T
=
{
x
1
,
x
2
,
⋯
,
x
N
}
T=\left \{ x_{1},x_{2},\cdots,x_{N} \right \}
T={x1,x2,⋯,xN},其中
x
i
=
(
x
i
(
1
)
,
x
i
(
2
)
,
⋯
,
x
i
k
)
T
x_{i}=\left ( x_{i}^{(1)},x_{i}^{(2)},\cdots,x_{i}^{k} \right )^{T}
xi=(xi(1),xi(2),⋯,xik)T,
i
=
1
,
2
,
⋯
,
N
i=1,2,\cdots ,N
i=1,2,⋯,N。
■输出:kd树。
■算法步骤:
★开始:构造根节点,根结点对应于包含
T
T
T的
k
k
k维空间的超矩形区域。选择
x
(
1
)
x^{(1)}
x(1)为坐标轴,以
T
T
T所有实例点的
x
(
1
)
x^{(1)}
x(1)的中位数作为切分点
x
m
e
d
i
a
n
x_{median}
xmedian划分区域(切分是通过切分点并与坐标轴
x
(
1
)
x^{(1)}
x(1)垂直的超平面实现的),会划分成两个子区域。本次切分产生深度为1的左、右子结点。左子结点对应于坐标
x
(
1
)
<
x
m
e
d
i
a
n
(
1
)
x^{(1)}<x_{median}^{(1)}
x(1)<xmedian(1)的子区域,右子结点对于坐标
x
(
1
)
>
x
m
e
d
i
a
n
(
1
)
x^{(1)}>x_{median}^{(1)}
x(1)>xmedian(1)的子区域。将落在切分超平面上的实例点保存在根结点。
★重复:对深度为
j
j
j的子节点,选择
x
(
l
)
x^{(l)}
x(l)为切分的坐标轴,
l
=
j
(
m
o
d
k
)
+
1
l=j(mod\ k)+1
l=j(mod k)+1。本次切分之后树的深度为
j
+
1
j+1
j+1。当树的深度超过
k
k
k维时,切分轴又重复回到
x
(
1
)
x^{(1)}
x(1)
★结束:直到两个子区域没有实例存在时停止,最终得到kd树的区域划分。
2.2 kd树的最近邻搜索算法
输入:已构造的kd树和目标点
x
x
x
输出:
x
x
x的最近邻点
步骤:
1、初始化:当前最近点为
x
=
n
u
l
l
x=null
x=null,当前的最近距离为
S
m
i
n
=
∞
S_{min}=\infty
Smin=∞。
2、在kd树中找到包含测试点
x
x
x的叶结点:从根节点出发,递归的向下访问kd树(二叉树搜索)。
■若测试点
x
x
x当前维度的坐标小于切分点的坐标,则找到当前的左子结点。
■若测试点
x
x
x当前维度的坐标大于切分点的坐标,则找到当前的右子结点。
在访问过程中记录下访问的各结点的顺序,方便与后面的回退,存放于先进后出的队列Queue中。
3、循环,结束条件队列Queue为空。
■从队列Queue中弹出一个结点,设该结点为
x
q
⃗
\vec{x_{q}}
xq。计算
x
⃗
\vec{x}
x到
x
q
⃗
\vec{x_{q}}
xq的距离,假设为
d
i
s
t
a
n
c
e
q
distance_{q}
distanceq。
若
d
i
s
t
a
n
c
e
q
<
d
i
s
t
a
n
c
e
n
s
t
distance_{q}<distance_{nst}
distanceq<distancenst ,则更新最近点与最近距离:
d
i
s
t
a
n
c
e
q
=
d
i
s
t
a
n
c
e
n
s
t
,
x
n
s
t
⃗
=
x
q
⃗
distance_{q}=distance_{nst} , \vec{x_{nst}} =\vec{x_{q}}
distanceq=distancenst,xnst=xq
■如果
x
q
⃗
\vec{x_{q}}
xq为中间结点:考虑以
x
⃗
\vec{x}
x为球心、以
d
i
s
t
a
n
c
e
n
s
t
distance_{nst}
distancenst为半径的超球体是否与
x
q
⃗
\vec{x_{q}}
xq所在的超平面相交。
如果相交:
若Queue中已经访问过了
x
q
⃗
\vec{x_{q}}
xq的左子树,则继续二叉树搜索
x
q
⃗
\vec{x_{q}}
xq的右子树。
若Queue中已经访问过了
x
q
⃗
\vec{x_{q}}
xq的左子树,则继续二叉树搜索
x
q
⃗
\vec{x_{q}}
xq的右子树。
二叉树搜索过程中,仍然在Queue中记录搜索的个结点。
4、循环结束时,
x
n
s
t
⃗
\vec{x_{nst}}
xnst就是
x
⃗
\vec{x}
x的最近邻点。
k
d
kd
kd树搜索的平均计算复杂度为
O
(
l
o
g
N
)
O\left ( logN \right )
O(logN),
N
N
N为训练集大小。
通常最近邻搜索只需要见测几个叶结点即可:
但如果样本点的分布比较糟糕,需要几乎遍历所有的结点:
3、python实现
git地址:https://github.com/lingxiaaisuixin/MarchineLearning/tree/master/KNN