笔记之K-近邻算法及python实现

1、K-近邻算法

K-近邻算法主要用于处理分类问题,采用测量不同特征之间的距离进行分类。

1.1算法原理

  • 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系。
  • 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。
  • 一般来说,只选择样本数据集中前N个最相似的数据。K一般不大于20,最后,选择k个中出现次数最多的分类,作为新数据的分类。
    例如:下图中当K值为3时,预测绿色的点则为红色的类别,当K值选取5时,预测绿色的点则为蓝色的类别。
    在这里插入图片描述

1.2算法特点

  • 优点
    精度高、对异常值不敏感、无数据输入假定
  • 缺点
    计算复杂度高、空间复杂度高
  • 适用数据范围
    数值型和标称型

1.3建立模型三要素

  • 距离度量
    特征空间中样本之间的距离是其相似程度的反映。一般算法中用到的距离度量方法是欧式距离
    L p L_{p} Lp距离公式:
    L P ( χ i , χ j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_{P}\left ( \chi _{i},\chi _{j} \right )=\left ( \sum_{l =1}^{n}\left | x_{i}^{\left ( l \right )} -x_{j}^{\left ( l \right )}\right |^{p} \right )^{\frac{1}{p}} LP(χi,χj)=(l=1nxi(l)xj(l)p)p1
    其中: p ≥ 1 , x i , x j ∈ R n p\geq 1,x_{i},x_{j}\in \mathbb{R}^{n} p1,xi,xjRn
    1.当 p = 1 p=1 p=1 时,称为曼哈顿距离
    L P ( χ i , χ j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L_{P}\left ( \chi _{i},\chi _{j} \right )= \sum_{l =1}^{n}\left | x_{i}^{\left ( l \right )} -x_{j}^{\left ( l \right )}\right | LP(χi,χj)=l=1nxi(l)xj(l)
    2.当 p = 2 p=2 p=2 时,称为欧式距离
    L 2 ( χ i , χ j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_{2}\left ( \chi _{i},\chi _{j} \right )=\left ( \sum_{l =1}^{n}\left | x_{i}^{\left ( l \right )} -x_{j}^{\left ( l \right )}\right |^{2} \right )^{\frac{1}{2}} L2(χi,χj)=(l=1nxi(l)xj(l)2)21
    3.当 p = ∞ p=\infty p= 时,为维度空间中距离最大值
    L P ( χ i , χ j ) = max ⁡ l ∣ x i ( l ) − x j ( l ) ∣ L_{P}\left ( \chi _{i},\chi _{j} \right )= \max_{l}^{}\left | x_{i}^{\left ( l \right )} -x_{j}^{\left ( l \right )}\right | LP(χi,χj)=lmaxxi(l)xj(l)
    注:不同距离度量 p p p所确定的最近邻近点是不同的。
    在这里插入图片描述

  • k值的选择

  1. k = 1 k=1 k=1时称为最近邻算法,此时将训练实例点中最接近输入实例点A的类别作为A分类类别。
  2. k k k值的选择会对 k k k近邻法的结果产生重大影响。
    ■如果 k k k值选择较小,则相当于用较小的领域中的训练实例进行预测,“学习”的近似误差会减小。
     ◇优点:只有与输入实例比较接近的(相似的)训练实例才会对预测结果起作用。
     ◇缺点:“学习”的估计误差会增大,预测结果会对近邻的实例点非常的敏感。如果近邻的实例点刚好是噪声,预测结果就会出错。即 k k k值的减小意味着整个模型变得复杂,容易发生过拟合。
    ■如果 k k k值选择较大,则相当于用较大的领域中的训练实例进行预测。
     ◇优点:可以减少学习的估计预测。
     ◇缺点:学习的近似误差会增大,与输入实例较远的(不相似的)训练实例也会对预测产生影响,可能会使预测出错。即 k k k值的增大就意味着整体模型变得简单。
    ■如果 k = N k=N k=N,那么预测的结果只跟训练实例有关,模型将变得无意义。

应用中,通常使用交叉验证的方式选取最优的 k k k值,对比不同 k k k值下的平均误差率,选取最小的一个。

  • 分类决策规则
    k k k近邻中的分类决策规则通常是多数表决,即由输入实例的 k k k个邻近的训练实例的类别的多数决定,少数服从多数原则。也可以通过距离的远近进行加权投票,距离越近的样本权重越大。
     多数表决规则:
    设分类的损失函数为0-1的损失函数,分类函数为
    f : R n → { c 1 , c 2 , ⋯   , c k } f:R^{n}\rightarrow \left \{ { c_{1}},{ c_{2}},\cdots ,{ c_{k}} \right \} f:Rn{c1,c2,,ck}
    给定的输入实例 x ∈ χ x\in \chi xχ,其最邻近的 k k k个训练实例点构成集合 N k ( x ) N_{k}(x) Nk(x)和预测的类别 c j c_{j} cj,那么误分类率为
    1 k ∑ x i ∈ N k ( x ) I ( y i ≠ c j ) = 1 − 1 k ∑ x i ∈ N k ( x ) I ( y i = c j ) \frac{1}{k}\sum_{x_{i}\in N_{k}(x)}I(y_{i}\neq c_{j})=1-\frac{1}{k}\sum_{x_{i}\in N_{k}(x)}I(y_{i}= c_{j}) k1xiNk(x)I(yi=cj)=1k1xiNk(x)I(yi=cj)
    要使误分类率最小即经验风险最小,就要使 ∑ x i ∈ N k ( x ) I ( y i = c j ) \sum_{x_{i}\in N_{k}(x)}I(y_{i}= c_{j}) xiNk(x)I(yi=cj)最大。
    以最开始的那张图为例,当K值取3时, c j c_{j} cj属于红色类别的误分类率为 1 − 1 3 ( 1 + 1 ) = 1 3 1-\frac{1}{3}(1+1)=\frac{1}{3} 131(1+1)=31 c j c_{j} cj属于蓝色类别的误分类率为 1 − 1 3 ( 1 ) = 2 3 1-\frac{1}{3}(1)=\frac{2}{3} 131(1)=32,所以 c j c_{j} cj属于红色类别时误分类率最小。

2、kd树

 k近邻中主要考虑的问题是如何对训练数据进行快速k近邻搜索。最简单的实现方式是:线性扫描。当训练集很大是,计算非常耗时,可以考虑使用特殊的结构存储训练数据,常用到方法是使用kd树。

2.1 构造平衡kd树的算法

 kd树是二叉树,标识对k维空间的一个划分。构造平衡kd树的算法如下:
 ■输入: k k k维空间数据集 T = { x 1 , x 2 , ⋯   , x N } T=\left \{ x_{1},x_{2},\cdots,x_{N} \right \} T={x1,x2,,xN},其中 x i = ( x i ( 1 ) , x i ( 2 ) , ⋯   , x i k ) T x_{i}=\left ( x_{i}^{(1)},x_{i}^{(2)},\cdots,x_{i}^{k} \right )^{T} xi=(xi(1),xi(2),,xik)T i = 1 , 2 , ⋯   , N i=1,2,\cdots ,N i=1,2,,N
 ■输出:kd树。
 ■算法步骤:
  ★开始:构造根节点,根结点对应于包含 T T T k k k维空间的超矩形区域。选择 x ( 1 ) x^{(1)} x(1)为坐标轴,以 T T T所有实例点的 x ( 1 ) x^{(1)} x(1)的中位数作为切分点 x m e d i a n x_{median} xmedian划分区域(切分是通过切分点并与坐标轴 x ( 1 ) x^{(1)} x(1)垂直的超平面实现的),会划分成两个子区域。本次切分产生深度为1的左、右子结点。左子结点对应于坐标 x ( 1 ) < x m e d i a n ( 1 ) x^{(1)}<x_{median}^{(1)} x(1)<xmedian(1)的子区域,右子结点对于坐标 x ( 1 ) > x m e d i a n ( 1 ) x^{(1)}>x_{median}^{(1)} x(1)>xmedian(1)的子区域。将落在切分超平面上的实例点保存在根结点。
  ★重复:对深度为 j j j的子节点,选择 x ( l ) x^{(l)} x(l)为切分的坐标轴, l = j ( m o d   k ) + 1 l=j(mod\ k)+1 l=j(mod k)+1。本次切分之后树的深度为 j + 1 j+1 j+1。当树的深度超过 k k k维时,切分轴又重复回到 x ( 1 ) x^{(1)} x(1)
  ★结束:直到两个子区域没有实例存在时停止,最终得到kd树的区域划分。

2.2 kd树的最近邻搜索算法

输入:已构造的kd树和目标点 x x x
输出: x x x的最近邻点
步骤:
1、初始化:当前最近点为 x = n u l l x=null x=null,当前的最近距离为 S m i n = ∞ S_{min}=\infty Smin=
2、在kd树中找到包含测试点 x x x的叶结点:从根节点出发,递归的向下访问kd树(二叉树搜索)。
 ■若测试点 x x x当前维度的坐标小于切分点的坐标,则找到当前的左子结点。
 ■若测试点 x x x当前维度的坐标大于切分点的坐标,则找到当前的右子结点。
 在访问过程中记录下访问的各结点的顺序,方便与后面的回退,存放于先进后出的队列Queue中。
3、循环,结束条件队列Queue为空。
 ■从队列Queue中弹出一个结点,设该结点为 x q ⃗ \vec{x_{q}} xq 。计算 x ⃗ \vec{x} x x q ⃗ \vec{x_{q}} xq 的距离,假设为 d i s t a n c e q distance_{q} distanceq
  若 d i s t a n c e q < d i s t a n c e n s t distance_{q}<distance_{nst} distanceq<distancenst ,则更新最近点与最近距离:
d i s t a n c e q = d i s t a n c e n s t , x n s t ⃗ = x q ⃗ distance_{q}=distance_{nst} , \vec{x_{nst}} =\vec{x_{q}} distanceq=distancenst,xnst =xq
 ■如果 x q ⃗ \vec{x_{q}} xq 为中间结点:考虑以 x ⃗ \vec{x} x 为球心、以 d i s t a n c e n s t distance_{nst} distancenst为半径的超球体是否与 x q ⃗ \vec{x_{q}} xq 所在的超平面相交。
  如果相交:
   若Queue中已经访问过了 x q ⃗ \vec{x_{q}} xq 的左子树,则继续二叉树搜索 x q ⃗ \vec{x_{q}} xq 的右子树。
   若Queue中已经访问过了 x q ⃗ \vec{x_{q}} xq 的左子树,则继续二叉树搜索 x q ⃗ \vec{x_{q}} xq 的右子树。
   二叉树搜索过程中,仍然在Queue中记录搜索的个结点。
4、循环结束时, x n s t ⃗ \vec{x_{nst}} xnst 就是 x ⃗ \vec{x} x 的最近邻点。

k d kd kd树搜索的平均计算复杂度为 O ( l o g N ) O\left ( logN \right ) O(logN) N N N为训练集大小。
通常最近邻搜索只需要见测几个叶结点即可:
在这里插入图片描述
但如果样本点的分布比较糟糕,需要几乎遍历所有的结点:
在这里插入图片描述

3、python实现

git地址:https://github.com/lingxiaaisuixin/MarchineLearning/tree/master/KNN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值