Python-机器学习(二)-K近邻算法的原理与鸢尾花数据集实现详解

from sklearn.neighbors import KNeighborsClassifier

k=5

#对模型训练

clf = KNeighborsClassifier(n_neighbors=k)

clf.fit(x,y)

#对样本进行预测

x_sample = [[0,2]]

neighbors = clf.kneighbors(x_sample)

neighbors[1]

plt.figure(figsize=(16,10))

plt.scatter(x[:,0],x[:,1], c=y, s=100, cmap=‘cool’)

中心点画一下

plt.scatter(c[:,0],c[:,1], s= 100, marker=“^”, c=‘black’)

#画出待预测的点

plt.scatter(x_sample[0][0],x_sample[0][1],marker=‘*’,s=200,cmap=‘cool’)

把预测点与距离最近的5个样本连成线

for i in neighbors[1][0]:

plt.plot([x[i][0], x_sample[0][0]], [x[i][1],x_sample[0][1]], ‘k–’, linewidth=0.6)

plt.show()

鸢尾花数据集


  • Iris 鸢尾花数据集内包含 3 类分别为山鸢尾、虹膜锦葵、变色鸢尾,共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:萼片长度、萼片宽度、花瓣长度、花瓣宽度,可以通过这4个特征预测鸢尾花卉属于哪一品种。

rom sklearn.datasets import load_iris

iris=load_iris()

iris_data=iris.data

iris_data

#获取样本标记值

iris_target = iris.target

iris_target

##target是一个数组,存储了data中每条记录属于哪一类鸢尾植物,

##所以数组的长度是150

##划分训练集和测试集

x_train,x_test,y_train,y_test= train_test_split(iris_data,iris_target,test_size=0.25)

训一下

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(x_train,y_train)

y_predict = knn.predict(x_test)

##展示一下预测结果

labels=[‘山鸢尾’,‘虹膜锦葵’,‘变色鸢尾’]

for i in range(len(y_predict)):

print(“第%d次测试:真实值是%s,预测值是%s” % ((i+1),labels[y_predict[i]],labels[y_test[i]]))

返回给定测试数据和标签的平均精度

knn.score(x_test,y_test)=0.9736842105263158

有预测错误,寻找最佳K值

from matplotlib.pyplot import MultipleLocator

from sklearn.model_selection import cross_val_score

plt.figure(figsize=(15,10))

k_range = range(1,30)

k_error = []

x = iris.data

y = iris.target

#循环取 看误差效果

for k in k_range:

knn = KNeighborsClassifier(n_neighbors=k)

#cv参数划分训练集和测试集

scores = cross_val_score(knn,x,y,cv=6)

k_error.append(1-scores.mean())

x_major_locator=MultipleLocator(1)

ax=plt.gca()

ax.xaxis.set_major_locator(x_major_locator)

plt.plot(k_range,k_error)

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

  • 23
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值