spoj8281

3 篇文章 0 订阅
3 篇文章 0 订阅

题意是:给出一组数字,然后让你判断在正整数中不能由这些数字表示的数的个数,感觉就是一个BFS,可是怎么gao都不行就是wa,后来在大神提示下,明白了SPFA可破,哎,我那可怜的BFS怎么就是过不了,望路过的大神不吝赐教。


//用最短路模拟求解不同余数的最小数,队列中存的是小于data[0]的不同余数,每次将不同的余数加入队列
#include <iostream>
#include <queue>
#include <set>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <algorithm>

#define LL long long
#define min(a,b) a>b?b:a

using namespace std;
const LL inf=1ll<<55;
const int maxn=100010;
LL dist[maxn];
int hash[maxn];
int data[40];
int node;

void init()
{

	int i;
	for(i=0;i<maxn;i++)
	{
		dist[i]=inf;
		hash[i]=0;
	}


}

LL SPFA()
{
	LL ans=0,now;
	queue<int> que;
	que.push(0);
	hash[0]=1;
	dist[0]=0;
	while(!que.empty())
	{
		now=que.front();
		que.pop();
		hash[now]=0;
		for(int i=0;i<node;i++)
		{
			int v=(dist[now]+data[i])%data[0];
			if(dist[v]>dist[now]+data[i])
			{
				dist[v]=dist[now]+data[i];
				if(hash[v]==0)
				{
					que.push(v);
					hash[v]=1;
				}


			}


		}
	}

	for(int i=1;i<data[0];i++)
	{
		if(dist[i]>=inf)
			return -1;
		else
		{
			ans+=dist[i]/data[0];
		}

	}
	return ans;
}

int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&node);
		for(int i=0;i<node;i++)
			scanf("%d",&data[i]);
		sort(data,data+node);
		init();
		LL result=SPFA();
		if(result==-1)
			printf("Infinite\n");
		else
			printf("%lld\n",result);

	}

}


java写BFS就是一直wa到底是哪的错?,大神指点呀

import java.util.Arrays;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Scanner;
public class spoj8281 {
	static int maxn=100010;
	static long inf=1<<60;
	static long data[]=new long[maxn];
	static long initdata[]=new long[maxn];
	static int number;
	
	public static void main(String[] args) {
		
		Scanner in=new Scanner(System.in);
		int casenum=in.nextInt();;
		while(casenum--!=0)
		{
			long ans=0;
			PriorityQueue<Long> lis =new PriorityQueue<Long>(100010,new Comparator<Long>(){
				public int compare(Long a,Long b)
				{
					if(a<b)
						return -1;
					else
						return 1;
				}
			});
			number=in.nextInt();
			for(int i=0;i<number;i++)
			{
				initdata[i]=in.nextInt();
			}
			Arrays.sort(initdata,0,number);
			Arrays.fill(data, inf);
			long len=initdata[0];
			int index=0;
			for(int i=0;i<number;i++)
			{
			int flag=(int) (initdata[i]%initdata[0]);
			if(data[flag]>=inf)
			{
				lis.add(initdata[i]);
				data[flag]=initdata[i];
				ans+=data[flag]/initdata[0];
				index++;
			}
			}
			boolean f=true;
			if(index<len)
			{
				f=false;
			while(!lis.isEmpty())
			{
				long te1=lis.poll();
				for(int i=0;i<number;i++)
				{
					long te2=te1+initdata[i];
					int te3=(int) (te2%initdata[0]);
					if(data[te3]==inf)
					{
						data[te3]=te2;
						ans+=data[te3]/initdata[0];
						index++;
						if(index==len)
						{
							f=true;
							break;
						}
						lis.add(te2);
					}
				}
				if(index==len)
					break;
			}
			}
			if(f)
				System.out.println(ans-1);
			else
				System.out.println("Infinite");
			
		}
	}
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
题目链接: UVA 12404 Excitement Levels SPOJ EXCITE - Excitement Levels Codeforces 583E - Watching Fireworks is Fun 题意概述: 有两只奶牛Bessie和Elsie通过一个电话线交换消息,每条消息可能是Bessie发出的、Elsie发出的,或两只奶牛都发出的。我们将Bessie和Elsie发出的消息的序列表示为两个字符串$B$和$E$,其中$B$表示Bessie发送的消息,$E$表示Elsie发送的消息。例如:当$B = \texttt{AEABBABA}$且$E = \texttt{BEABEAE}$时,下表描述了这两只奶牛之间的一些有可能的信息交换: $$ \begin{array}{|c|c|c|} \hline \textbf{位置} & \textbf{消息} & \textbf{发送方} \\ \hline 1 & A & B \\ \hline 2 & E & E \\ \hline 3 & A & E \\ \hline 4 & B & B \\ \hline 5 & A & E \\ \hline 6 & B & A \\ \hline 7 & A & B \\ \hline 8 & E & A \\ \hline 9 & - & - \\ \hline \end{array} $$ 对于给定的字符串$B$和$E$,我们可以尝试恢复出她们发送的所有消息。让$S$表示任意一种可能的恢复方案中,两只奶牛发送的所有消息组成的序列。例如:上表中的恢复方案为$\texttt{AEABBAEAB}$,其中有两个BB子串和两个EE子串。我们将$S$中BB子串和EE子串的总数称为这个方案的兴奋水平。 现在,给定$B$和$E$,请你计算出所有可能的兴奋水平,并把它们按从小到大的顺序输出。 题解: 一些定义: $B$的长度为$n$。 $E$的长度为$m$。 如果我们知道了一个恢复方案,那么我们可以在$O(n + m)$的时间内判断它的兴奋水平。具体来说,我们可以使用一个单调栈来计算所有在$S$中以BB或EE为结尾的子串的数量,其中栈中存储了在$S$中以B或E为结尾的子串的个数。 根据上面的定义,我们可以发现给定任意一个$S$,我们可以用单调栈在$O(n + m)$的时间内计算出$S$的兴奋水平,但是一个字符串有$n + m - 1$个位置,因此存在$(n + m - 1)!$多种可能的$S$。我们显然不能枚举所有的$S$。 解决方案: 我们可以直接计算出所有满足条件的$S$。具体来说,我们可以在一个递归的函数中,构建一个字符数组$S$,表示目前为止我们已经选择了哪些字符。在每个递归调用中,我们都会向$S$中添加一个字符——当前字符序列中次数较少的一个字符。如果$S$已经被填满,那么我们就可以在$O(n + m)$的时间内计算出当前方案的兴奋水平,并将其添加到答案数组中。这个递归函数的时间复杂度为$O((n + m)! (n + m))$,空间复杂度也为$O((n + m)!)$。在本题的数据范围内,这个算法可以通过本题。 代码:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xinge008

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值