python-tensorflow 控制依赖案例(阶乘)

#%%

import tensorflow as tf
import numpy as np
import os
import hashlib
import matplotlib.pylab as plt
import cv2
from PIL import Image

#%%
#1、定义一个变量
sum = tf.Variable(initial_value=1,dtype=tf.int32)

#2、定义一个占位符
i= tf.Variable(initial_value=6,dtype=tf.int32)

#3、更新操作
temp_sum = sum*i
assign_sub_op = tf.assign_sub(i,1)
assign_op     = tf.assign(sum,temp_sum)

#如果需要执行这个代码块中的内容,必须先执行control_dependencies中给定的操作/tensor
with tf.control_dependencies([assign_op,assign_sub_op]):
    temp_sum = tf.identity(temp_sum)

with tf.Session() as sess:
    tf.global_variables_initializer().run()
    
    a = sess.run(i)
    for j in range(1,a):
        #执行更新操作
        print('temp_sum:',sess.run(temp_sum))

输出:

 

temp_sum: 5

temp_sum: 20

temp_sum: 60

temp_sum: 120

temp_sum: 120

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值