写在前面
基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
归并排序算法的实现
需要解决的问题,
- 怎么将两个块合并成一个块。merge函数实现
- 怎么划分块。merge_sort函数实现
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <malloc.h>
const int MAXSIZE = 100;
void merge(int *, int, int, int);
void merge_sort(int *, int, int);
int main()
{
int data[MAXSIZE];
time_t t;
srand((unsigned)time(&t));
// 随机生成20个数
for(int i=0;i<20;i++)
{
data[i] = rand() % 100;
}
for(int i=0;i<20;i++)
{
printf("%d ", data[i]);
}
printf("\n");
merge_sort(data, 0, 19);
for(int i=0;i<20;i++)
{
printf("%d ", data[i]);
}
printf("\n");
return 0;
}
/**
* @param: data 数组第一个元素的地址
* @param: left 第一个元素的下标
* @param: right 最后一个元素的下标
*
*/
void merge_sort(int *data, int left, int right)
{
if (data == NULL || left >= right)
return;
int mid = (left + right) / 2;
merge_sort(data, left, mid);
merge_sort(data, mid + 1, right);
merge(data, left, mid, right);
}
/**
* @param: data 数组第一个元素的地址
* @param: left 归并时第一块的第一个元素的下标
* @param: mid 两块的交点
* @param: right 归并时第二块的最后一个元素的下标
*/
void merge(int *data, int left, int mid, int right)
{
int *tmp = (int *)malloc(sizeof(int) * (right - left + 1));
int k = 0; // k记录在tmp中的下标
int i=left, j=mid+1;
while (i<=mid || j<=right)
{
if (i > mid)
{
tmp[k ++] = data[j ++];
}
else if (j > right)
{
tmp[k ++] = data[i ++];
}
else if (data[i]<data[j])
{
tmp[k ++] = data[i ++];
}
else
{
tmp[k ++] = data[j ++];
}
}
for (int i=0;i < k; i++)
{
data[left + i] = tmp[i];
}
free(tmp);
}
归并排序效率分析
归并排序时间复杂度
归并排序的时间复杂度是
O
(
N
∗
l
g
N
)
O(N*lgN)
O(N∗lgN).
假设被排序的数列中有N个数。遍历一趟的时间复杂度是
O
(
N
)
O(N)
O(N),需要遍历多少次呢?
归并排序的形式就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的可以得出它的时间复杂度是
O
(
N
∗
l
g
N
)
O(N*lgN)
O(N∗lgN)。
归并排序稳定性
归并排序是稳定的算法,它满足稳定算法的定义。
算法稳定性 – 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!
参考内容:
归并排序
文中都是我个人的理解,如有错误的地方欢迎下方评论告诉我,我及时更正,大家共同进步