C语言实现归并排序

写在前面

基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

归并排序算法的实现

需要解决的问题,

  1. 怎么将两个块合并成一个块。merge函数实现
  2. 怎么划分块。merge_sort函数实现
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <malloc.h>

const int MAXSIZE = 100;

void merge(int *, int, int, int);
void merge_sort(int *, int, int);

int main()
{
    int data[MAXSIZE];
    time_t t;
    srand((unsigned)time(&t));
    // 随机生成20个数
    for(int i=0;i<20;i++)
    {
        data[i] = rand() % 100;
    }
    for(int i=0;i<20;i++)
    {
        printf("%d ", data[i]);
    }
    printf("\n");
    merge_sort(data, 0, 19);
    for(int i=0;i<20;i++)
    {
        printf("%d ", data[i]);
    }
    printf("\n");
    return 0;
}
/**
 * @param: data 数组第一个元素的地址
 * @param: left 第一个元素的下标
 * @param: right 最后一个元素的下标
 *
 */
void merge_sort(int *data, int left, int right)
{
    if (data == NULL || left >= right)
        return;
    int mid = (left + right) / 2;
    merge_sort(data, left, mid);
    merge_sort(data, mid + 1, right);

    merge(data, left, mid, right);
}

/**
 * @param: data 数组第一个元素的地址
 * @param: left 归并时第一块的第一个元素的下标
 * @param: mid 两块的交点
 * @param: right 归并时第二块的最后一个元素的下标
 */
void merge(int *data, int left, int mid, int right)
{
    int *tmp = (int *)malloc(sizeof(int) * (right - left + 1));
    int k = 0; // k记录在tmp中的下标
    int i=left, j=mid+1;
    while (i<=mid || j<=right)
    {
        if (i > mid)
        {
            tmp[k ++] = data[j ++];
        }
        else if (j > right)
        {
            tmp[k ++] = data[i ++];
        }
        else if (data[i]<data[j])
        {
            tmp[k ++] = data[i ++];
        }
        else
        {
            tmp[k ++] = data[j ++];
        }
    }
    for (int i=0;i < k; i++)
    {
        data[left + i] = tmp[i];
    }
    free(tmp);
}

归并排序效率分析

归并排序时间复杂度
归并排序的时间复杂度是 O ( N ∗ l g N ) O(N*lgN) O(NlgN).
假设被排序的数列中有N个数。遍历一趟的时间复杂度是 O ( N ) O(N) O(N),需要遍历多少次呢?
归并排序的形式就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的可以得出它的时间复杂度是 O ( N ∗ l g N ) O(N*lgN) O(NlgN)

归并排序稳定性
归并排序是稳定的算法,它满足稳定算法的定义。
算法稳定性 – 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!

参考内容:
归并排序

文中都是我个人的理解,如有错误的地方欢迎下方评论告诉我,我及时更正,大家共同进步

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值