3.5表征学习方法

本文探讨了表征学习在因果推理和领域适应中的重要性,特别是在处理观察性研究中的药物效果时。通过平衡表示学习,目标是降低事实和反事实分布之间的差异,同时保持对事实和反事实结果的预测准确性。文中介绍了多种模型和方法,如基于深度学习的SITE方法,用于保留局部相似性信息,以及CTAM方法,利用对抗学习过滤工具变量。匹配方法,如NNM和子空间匹配,提供了解释性较强的治疗效果估计。
摘要由CSDN通过智能技术生成

 

 人工智能之强化学习 

 

本节学习第五个方法-表征学习。

3.5.1平衡表示学习

统计学习理论中最基本假设是,训练数据和测试数据来自同一分布。但是,在大多数实际情况下,测试数据是从一个仅与训练数据的分布相关但不相同的分布中提取的。

在因果推理中,这也是一个很大的挑战。与随机对照试验不同,观察数据中不明确治疗分配的机制。因此,感兴趣的干预并非独立于受试者的属性。

例如,在对药物治疗效果的观察性研究中,根据几个因素(包括已知的混杂因素和一些未知的混杂因素)将药物分配给个体。

结果,反事实分布通常将与事实分布不同。因此,有必要通过从事实数据中学习来预测反事实结果,从而将因果推理问题转换为领域适应问题。

提取有效的特征表示对于领域适应至关重要。文献14从理论上提出了一个具有泛化的模型来形式化这种直觉,它不仅可以显式地最小化源域和目标域之间的差异,而且可以最大化训练集的边界。

基于这项工作,分布之间的差异距离被定制为具有任意损失函数的适应性问题。在下面的讨论中,差异距离在解决因果推理中的域适应问题方面起着重要作用。

到目前为止,我们可以看到反事实推理与领域适应之间的联系。一种直观的想法是加强表示空间中不同处理组分布之间的相似性。习得的表征需要权衡三个目标:

  • (1)相对于事实表征的低误差预测;

  • (2)考虑相关事实结果对反事实结果的低误差预测,

  • (3)治疗人群和控制人群分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值