手写线性回归

本文详细介绍了线性回归的基本原理,包括预测函数、代价函数的推导,以及最小二乘法的训练过程。通过实例展示了如何使用梯度下降法进行优化,并给出了线性回归的简单实现及测试用例。讨论了数据预处理对收敛速度的影响,以及超参数alpha的选择对迭代速度的控制。最后提到了随机梯度下降法作为另一种快速计算的优化方法。
摘要由CSDN通过智能技术生成

纸质笔记本很容易丢失,还是记在网上吧

线性回归是最基础的机器学习模型,假设结果和特征关系为线性,从而来预测结果

预测函数为

h_\theta(X)=\theta_0 + \theta_1 x_1\cdots =\theta^TX

训练的时候要最小化代价函数

根据中心极限定理,多个独立原因导致的分布是正态分布。那么多个样本的误差满足正态分布,可以通过最大化似然函数推出训练过程其实就是最小二乘法。

因为对于单个样本,误差满足 

\varepsilon^{(i)} \sim \mathbb{N}(\theta^TX^{(i)}, \sigma^2)

P(y^{(i)} | x^{(i)}; \theta) \sim \mathbb{N}(\theta^TX^{(i)}, \sigma^2)

假设所有样本是独立同分布的,那么所有样本的似然函数为

L(\theta)=P(y|x;\theta)=\prod_{i=1}^m P(y^{(i)}|x^{(i)};\theta)

为了计算方便取对数

l(\theta) = \log L(\theta) = \sum \log P = m \log \frac{1}{\sqrt{2\pi}\sigma} + \sum_{i=1}^m -\frac{(y^{(i)} - \theta^Tx^{(i)})^2}{2 \sigma^2}

最大化 l(theta)就是最小化

\frac{1}{2}(y^{(i)} - \theta^Tx^{(i)})^2

也就是最小二乘法。

所以

训练的目标是

\underset{\theta}{\min}\frac{1}{2m}\sum_{i=1}^m(h_\theta (x^{(i)}) - y^{(i)})^2

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值