3Sum

3Sum

  Total Accepted: 72707  Total Submissions: 430722 My Submissions

Given an array S of n integers, are there elements abc in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.

Note:

  • Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
  • The solution set must not contain duplicate triplets.

    For example, given array S = {-1 0 1 2 -1 -4},

    A solution set is:
    (-1, 0, 1)
    (-1, -1, 2)
</pre><pre style="overflo算法说明:http://blog.csdn.net/nanjunxiao/article/details/12524405
class Solution {
public:
    vector<vector<int> > threeSum(vector<int> &num) {
        
	int size = num.size();
	vector<vector<int> > result;
	if( size < 3) return result;
	//排序
	int *number = new int[size];
	for( int i = 0; i < size; i++)
		number[i] = num[i];
    QuickSort(number, size);
	//求三角数
	for( int i = 0;i < size - 2; i++)
	{
		if( number[i] == number[i-1] && i != 0 )
			continue;
		int sum = -number[i];
		int mid = i + 1;
		int right = size - 1;
		while(mid < right)
		{
			if( number[mid] == number[mid -1] && mid > i+1)
			{  
			    mid ++;
				continue;
			}
			int tmp = number[mid] + number[right];
            if(tmp < sum) mid ++;
		    else if( tmp > sum)right --;
		    else
			{
				vector<int> tri;
				tri.push_back( number[i] );
				tri.push_back( number[mid] );
				tri.push_back( number[right] );
				result.push_back(tri);
				mid ++; right --;
			}
		}
	}
    delete []number;
	return result;
    }
	//从小到大排序
	void QuickSort(int *num, int size)
	{
		if( size <= 1) return;
		int mid = num[size - 1],tmp,j = 0;
		for(int i = 0; i < size - 1; i ++)
		{
			if( num[i] < mid)
			{
				tmp = num[i];
				num[i] = num[j];
				num[j] = tmp;
				j++;
			}
		}
		num[size - 1] = num[j];
		num[j] = mid;
		if(j > 1)
			QuickSort(num, j );
		if(j < size - 2)
			QuickSort(num + j + 1, size - j - 1); 
	}
};




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值