[LeetCode]3Sum

题目要求如下:

Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.

Note:

  • Elements in a triplet (a,b,c) must be in non-descending order. (ie, a  b  c)
  • The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},

    A solution set is:
    (-1, 0, 1)
    (-1, -1, 2)

     如果之前做过求“和为某值的2个数的组合”这种题,应该不会觉得这道题有难度。但这道题需要去掉重复的解,所以在去重方面需

要下功夫,因为单是求解就需要O(n2),如果在求解的循环中还嵌套有其他O(n)以上的去重操作,整体的时间就会到O(n3)以

上,所以这是个重点。为了避免这个O(n)以上的去重操作,我们在求出解的过程中需要一些技巧去掉不必要的操作。

 

解题思路如下:

首先是求解:因为要求3个数,如果我们固定其中1个数,再用求“和为某值的2个数的组合”的解法,就能把剩下的2个数求出来。因

此,先对数组进行非递减排序,这样整个数组的数就由小到大排列。i 的取值由 0 至 n-1,对每一个i,我们求当num[i]是解当中的其

中一个数时,其他的2个数。设有指针p指向数组头(实际只要p从i+1开始),q指向数组尾,sum = num[i] + num[p]+ num[q],因为num[i]

是一定在解中的,所以如果sum < 0,因为num[q]已经不能增大,所以说明num[p]太小了,这时p需要向后移动,找一个更大的数。

同理,sum > 0,明num[q]太大了,需要q向前移动。当sum == 0时,说明找到了一个解。但找到了一个解,并不说明解中有num[i]的

所有解都找到了,因此p或q还需要继续移动寻找其他的解,直到p == q为止。

 

上面是求解的过程,那么去重怎么做?去重就在于和之前的解进行比较,但我们不需要比较所有的解,这里有一个技巧。

1. 如果num[i] = num[i - 1],说明刚才i-1时求的解在这次肯定也会求出一样的,所以直接跳过不求;

2. 其实指针p不需要从数组头开始,因为如果num[i]所在的解中如果有i之前的数,设其位置为j,那么我们求num[j]时,肯定把num[i]

    也找出来放到和num[j]一起的解里了,所以指针p其实应该从i+1开始,即初始时p = i + 1, q = num.size() - 1;

3. 当sum == 0,我们保存了当前解以后,需要num[i]在解中的其他的2个数组合,这个时候,肯定是p往后或者q往前,如果++p,发

    现其实num[p] == num[p-1],说明这个解肯定和刚才重复了,再继续++p。同理,如果--q后发现num[q] == num[q+1],继续--q。

    这个去重操作主要针对这种有多个同值的数组,如:-3, 1,1,1, 2,2,3,4。

    

有了以上3个去重操作的支持,就不用再使用set或者map之类去重了,此时整体的时间复杂度是O(n2),这样我们就能顺利写出不超

时的AC代码了。

      

代码如下,欢迎指导交流~

AC,Runtime: 280 ms

//LeetCode_3Sum
//Written by zhou
//2013.11.23

class Solution {
public:

    //插入排序
void InsertSort(vector<int> &a, int n)
{
	int temp;
	for (int i = 1; i < n; ++i)
	{
		temp = a[i];
		int j;
		for (j = i; j > 0 && temp < a[j - 1]; --j)
		{
			a[j] = a[j - 1];
		}
		a[j] = temp;
	}
}

     vector<vector<int> > threeSum(vector<int> &num) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
        
        vector<vector<int>> res;

		if (num.size() < 3)  //小于3个数
			return res;

		//对原数组非递减(递增)排序
		InsertSort(num,num.size()); 
        
        for (int i = 0; i < num.size(); ++i)
        {
			//去重
            if (i != 0 && num[i] == num[i-1])
				continue;

            int p = i + 1, q = num.size() - 1;
            int sum = 0;
            
			//收缩法寻找第2,第3个数
            while (p < q)
            {
                sum = num[i] + num[p] + num[q];
                
                if (sum == 0)
                {
                    vector<int> newRes;
                    newRes.push_back(num[i]);
                    newRes.push_back(num[p]);
                    newRes.push_back(num[q]);
					InsertSort(newRes,newRes.size());
                    res.push_back(newRes);

			
					//寻找其他可能的2个数,顺带去重
					while (++p < q  && num[p-1] == num[p])
					{
						//do nothing
					}
					while (--q > p && num[q+1] == num[q])
					{
						//do noghing
					}
                }
                else if (sum < 0)  //和太小,p向后移动
				{
                    ++p;
				}
                else            //和过大,q向前移动
				{
                    --q;
				}
            }
        }
        
        return res;
    }
};


 

 

 
 

没有更多推荐了,返回首页