显卡CUDA和安装CUDA关系

属于深度学习常见的问题。
就是显卡版本,和代码CUDA版本和CUDNN的关系

重点

硬件环境:显卡版本 3090 + NVIDIA-Linux-x86_64-510.68.02

例如:我的驱动是510.85.02,驱动附带cuda=11.6

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.85.02    Driver Version: 510.85.02    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  Off  | 00000000:27:00.0  On |                  N/A |
|  0%   36C    P8    18W / 350W |    525MiB / 24576MiB |      2%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      1097      G   /usr/lib/xorg/Xorg                 71MiB |
|    0   N/A  N/A      1723      G   /usr/lib/xorg/Xorg                155MiB |
|    0   N/A  N/A      1858      G   /usr/bin/gnome-shell               52MiB |
|    0   N/A  N/A      2500      G   ...890458150956446820,131072      227MiB |
+-----------------------------------------------------------------------------+

而我的torch版本是1.7.1+cu110

torch                              1.7.1+cu110
torchtext                          0.8.0
torchvision                        0.8.2
tornado                            6.1
tqdm                               4.63.1
traitlets                          4.3.2
transformers                       4.5.1

而我从nvidia下载的cuda版本是cuda_11.0_bu.TC445_37.28540450_0

:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Thu_Jun_11_22:26:38_PDT_2020
Cuda compilation tools, release 11.0, V11.0.194
Build cuda_11.0_bu.TC445_37.28540450_0

很明显,显卡带的版本的CUDA==11.6;我从英伟达下载的cuda版本是cuda==11.0;使用的torch的版本是torch==1.7.1+cu110,也是cuda11.0

总结

安装显卡驱动,附带cuda 版本 [必须 >= ]nvidia下载的cuda版本 [必须 = ] torch的cuda版本。

更详细的

  1. 显卡安装驱动时候,显卡驱动附带的CUDA版本可以高出库几个版本,但是一定不能低于安装的库版本!!!高了没关系,因为显卡CUDA是可以向下兼容CUDA库的,但是不能向上兼容。
  2. NVIDIA下载CUDA库的版本号,必须和你使用的torch需要的cuda版本对应;

其他注意事项:

  1. cuda11是针对30系显卡,10.2等等都是30系以前的显卡,所以30系用不了11.x版本之前的cuda库。
  2. 但是20系或者10系显卡可以用高版本cuda。所以CUDA版本高了,旧卡也可以用
    比如:
    如果装了cuda10.2版本,你的30系显卡是用不了的,torch版本对应也没用。
    但是装了cuda11.8版本,你的30系和40系都可以用。
对于一款具体的如NVIDIA GeForce RTX 4050显卡来说,由于CUDAcuDNN都是NVIDIA针对其GPU加速计算平台CUDA Toolkit的一部分,安装流程一般如下: 1. **检查兼容性**:首先确认你的显卡是否支持CUDA。RTX 4050属于RTX 30系列,理论上应该可以支持CUDA,但建议访问NVIDIA官网或查阅最新的驱动文档确认。 2. **下载CUDA Toolkit**:访问NVIDIA Developer网站(https://developer.nvidia.com/cuda-downloads),选择适合你系统的CUDA版本(通常是基于你的操作系统,如Windows、Ubuntu等)。注意选择针对支持的GPU系列的版本。 3. **安装CUDA**:运行安装程序,按照向导步骤进行安装。可能需要重启电脑以完成一些设置。 4. **安装cuDNN**:cuDNN是深度学习优化库,通常包含在CUDA Toolkit中。如果你需要额外安装,可以在NVIDIA cuDNN官网(https://developer.nvidia.com/cudnn)上找到对应版本的下载链接,然后按照官方指导进行安装。 5. **添加环境变量**:为了能够在Python或其他语言中使用cuDNN,你需要配置环境变量。这通常涉及编辑系统路径或特定脚本文件,确保cuDNN库能找到。 6. **验证安装**:安装完成后,你可以通过CUDA samples或简单的测试脚本来验证CUDAcuDNN是否已成功安装并能正常工作。 **相关问题--:** 1. RTX 4050支持哪些CUDA版本? 2. 如何检查我的显卡是否支持cuDNN? 3. 安装过程中遇到错误如何解决?
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值