CUDA和显卡驱动以及pytorch版本的对应关系

文章讲述了CUDA与GPU的关系,如何选择CUDA版本以匹配NVIDIA显卡驱动,强调了CUDA的兼容性特点,并提到了CUDA与PyTorch版本的对应关系,指导用户如何确保软件和硬件的协调工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 支持CUDA 的GPU 

 支持 CUDA 的 NVIDIA Quadro 和 NVIDIA RTX

CUDA GPU | NVIDIA Developer您的 GPU 计算能力 您是否正在寻找 GPU 的计算能力然后查看以下表格。您可以在这里了解更多 计算能力 。 NVIDIA GPU 为全球数百万台台式机笔记本电脑工作站和超级计算机提供动力加速了消费者专业人士科学家和研究人员的计算密集型任务 开始使用 CUDA 和 GPU 计算并免费加入我们的NVIDIA 开发者计划。https://developer.nvidia.com/zh-cn/cuda-gpus#compute


9a370426d72546c69e54e8e5d49be7eb.png
 

2 怎么知道nvidia显卡该用什么CUDA版本呢?

在官网查询nvidia 显卡驱动,链接如下:

Official Drivers | NVIDIADownload latest drivers for NVIDIA products including GeForce, TITAN, NVIDIA RTX, Data Center, GRID and more.https://www.nvidia.com/download/index.aspx?lang=en-us

60e21edbfdf141b49321c196011386bb.png

 

  结果如下,下载对应版本的显卡驱动即可。

2829f581543b4a4f8f83c9d8645f9819.png

CUDA和GPU之间的版本对应关系

CUDA和GPU之间的版本对应关系 - 知乎以前用cuda10开发的程序在新电脑上运行时会崩溃,检查后发现是cuda10只支持到RTX 2080,而新电脑显卡是RTX 3080 Ti,故而造成崩溃。解决方案:升级cuda到最新版。 下面列出CUDA支持的显卡型号: CUDA SDK 1.0 支持…https://zhuanlan.zhihu.com/p/544337083CUDA Toolkit Archive | NVIDIA DeveloperPrevious releases of the CUDA Toolkit, GPU Computing SDK, documentation and developer drivers can be found using the links below. Please select the release you want from the list below, and be sure to check www.nvidia.com/drivers for more recent production drivers appropriate for your hardware configuration.https://developer.nvidia.com/cuda-toolkit-archive

3 GPU与CUDA的关系

 

GPU(Graphics Processing Unit)和CUDA(Compute Unified Device Architecture)

GPU是一种专门设计用于处理图形和并行计算任务的硬件设备。它由许多小型处理单元(称为流处理器或CUDA核心)组成,能够同时执行多个并行计算任务。GPU的并行计算能力使其在科学计算、机器学习、深度学习等领域中得到广泛应用。

 

CUDA是一种由NVIDIA开发的并行计算平台和编程模型。它允许开发人员利用GPU的并行计算能力,通过使用CUDA编程语言(基于C/C++)来编写并行计算任务。CUDA提供了一组库和工具,使开发人员能够有效地利用GPU的计算资源。

 

CUDA将计算任务划分为许多线程,并在GPU上同时执行这些线程。每个线程都由CUDA核心执行,并且可以通过使用CUDA编程模型中的特定功能来协调和同步线程之间的操作。

 

因此,GPU是执行计算任务的硬件设备,而CUDA是一种编程模型和平台,允许开发人员利用GPU的并行计算能力进行高性能计算。通过CUDA,开发人员可以编写并行计算任务,并在支持CUDA的GPU上运行这些任务,从而实现加速计算和提高计算性能的目标。

       +------------------+
       |     CPU          |
       +------------------+
                |
                v
       +------------------+
       |     GPU          |
       +------------------+
                |
                v
+----------------------------------+
|          CUDA Runtime           |
|        (cudart library)         |
+----------------------------------+
                |
                v
+----------------------------------+
|    CUDA Compiler Toolchain      |
|       (nvcc, CUDA libraries)     |
+----------------------------------+

Nvidia显卡驱动与Cuda并不是一对一对应的关系,Nvidia显卡驱动只要满足Cuda版本的最低要求即可。

 

4. 显卡驱动版本和CUDA版本的对应

1在命令行中输入【nvidia-smi】可以查看当前显卡驱动版本和cuda版本。 

一般来说都是为了安装CUDA才会来确定驱动版本。这里也会出现CUDA Version:11.4 这里指的是,电脑可以安装最高版本是11.4,我们可以安装低版本的CUDA的。

nvidia-smi

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5bCP57Gz5ZOS5ZOS,size_20,color_FFFFFF,t_70,g_se,x_16

 

 具体版本与驱动版本对应关系如下:

CUDA 12.1 Update 1 Release NotesThe Release Notes for the CUDA Toolkit.https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

842511f73ee242928d254fdb670c957f.png

784822e2a980420aad562dec0388d7c7.png89fce60856f7490f99d681ecd86c9ef8.png 5 CUDA版本的升级和兼容

先查看确定硬件GPU相关是否被CUDA新版本兼容。 

https://docs.nvidia.com/deploy/cuda-compatibility/index.htmlhttps://docs.nvidia.com/deploy/cuda-compatibility/index.htmlNVIDIA® CUDA® Toolkit是一款用于构建在桌面计算机、企业和数据中心到超大规模计算环境中使用NVIDIA GPU加速的计算应用程序的开发工具。

它包括CUDA编译器工具链,包括CUDA runtime(cudart)和各种CUDA库和工具。为了构建一个应用程序,开发人员只需安装CUDA Toolkit和必要的链接所需库。

为了运行CUDA应用程序,系统必须具备CUDA兼容的GPU以及与用于构建应用程序的CUDA Toolkit兼容的NVIDIA显示驱动程序。如果应用程序依赖于库的动态链接,那么系统还必须具备正确版本的这些库。CUDA组件如下:

169bfd07725645c6af5a420e72aa7b01.png

 每个CUDA Toolkit都附带了一个NVIDIA显示驱动程序包,以方便使用。该驱动程序支持该版本CUDA Toolkit中引入的所有功能。需在官网查看工具包和驱动程序版本的映射关系。驱动程序包包括用户模式CUDA驱动程序(libcuda.so)和运行应用程序所需的内核模式组件。

通常升级CUDA Toolkit需要同时升级工具包和驱动程序,以获取最新的工具包和驱动程序功能。

CUDA升级路径如下:

d67a5038c5604588b5cf103042801f0f.png

6 CUDA对应的显卡驱动最低版本要求(同上第4)

 

9486c698ce354777bc77dccd6e655f8f.png

c56a678872724e71b08730301bf66982.png

更多版本参考: CUDA 12.1 Update 1 Release Notes

 

常说的cuda版本是什么
我们常说的cuda指的是 nvidia cuda toolkit 软件开发包,而不是不是GPU驱动…
相应的,cuda版本也即CUDA工具包的版本,而不是显卡驱动版本,请注意~~
运行cuda应用程序需要有两个前提:
①硬件:支持cuda的显卡, 很显然
②软件:与cuda toolkit兼容的显卡驱动程序
cuda每个版本都对应一个最低版本的显卡驱动程序
也就是说,cuda程序是向后兼容的,针对特定版本的 CUDA 编译的应用程序将继续在后续(以后)驱动程序版本上工作。
 

7  cuda与pytorch版本对应关系:

官网查询:

Previous PyTorch Versions | PyTorchAn open source machine learning framework that accelerates the path from research prototyping to production deployment.https://pytorch.org/get-started/previous-versions/

c003dcdffa1449f2b0d45c12ddf720a3.png

 

 

### Ubuntu 20.04 显卡驱动CUDA 版本不兼容解决方案 在处理 Ubuntu 20.04 上显卡驱动CUDA 不兼容的问题时,通常需要仔细检查当前安装的 NVIDIA 驱动程序版本以及所使用的 CUDA 工具包版本之间的匹配情况。以下是详细的分析解决方法: #### 检查现有配置 为了确认当前系统的 GPU CUDA 的状态,可以运行以下命令来获取必要的信息: ```bash nvidia-smi ``` 此命令会显示已安装的 NVIDIA 驱动版本以及其他硬件细节[^1]。 接着可以通过以下方式验证系统中的 CUDA 安装路径及其版本号: ```bash nvcc --version ``` 如果 `nvidia-smi` 或者 `nvcc` 命令无法正常工作,则可能表明存在驱动或者工具链未正确安装的情况。 #### 卸载旧版驱动 CUDA 软件包 为了避免冲突,在重新安装之前建议先清理掉现有的 NVIDIA 组件。执行如下操作卸载所有先前设置的内容: ```bash sudo apt-get remove --purge '^nvidia-.*' sudo apt autoremove sudo apt autoclean ``` 这一步骤有助于移除任何可能导致问题的老化组件或残留文件。 #### 下载并安装合适的 NVIDIA 驱动 访问[NVIDIA官方网站](https://www.nvidia.com/Download/index.aspx),依据自己的图形处理器型号挑选适合Ubuntu 20.04 LTS环境下的最新稳定版驱动下载链接。完成之后按照提示说明进行本地安装过程即可。 另外一种简便的方法是利用官方PPA源自动更新至推荐版本: ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update sudo ubuntu-drivers autoinstall reboot now ``` #### 安装对应版本CUDA Toolkit 根据目标应用需求选择恰当的CUDA发行版(例如TensorFlow, PyTorch等框架支持的具体范围)。一般情况下可以从NVIDIA开发者门户找到对应的离线deb(rpm)包形式的手册式部署指南;也可以通过APT管理器快速实现在线同步: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda ``` 最后记得重启计算机使更改生效,并再次测试上述提到的相关指令是否恢复正常运作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LeapMay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值