蓝桥 2018 .3.25

奇怪的比赛  2012 结果填空 )

某电视台举办了低碳生活大奖赛。题目的计分规则相当奇怪:

每位选手需要回答10个问题(其编号为1到10),越后面越有难度。答对的,当前分数翻倍;答错了则扣掉与题号相同的分数(选手必须回答问题,不回答按错误处理)。

每位选手都有一个起步的分数为10分。

某获胜选手最终得分刚好是100分,如果不让你看比赛过程,你能推断出他(她)哪个题目答对了,哪个题目答错了吗?

如果把答对的记为1,答错的记为0,则10个题目的回答情况可以用仅含有1和0的串来表示。例如:0010110011 就是可能的情况。

你的任务是算出所有可能情况。每个答案占一行。*/

#include"stdio.h"

#include"string.h"

int main()

{

 int a[11];

 int i;

 for ( i=0 ;i<10;i++)

 {     a[i]=0;  

 }

for (a[0]=0;a[0]<2;a[0]++)

{

for (a[1]=0;a[1]<2;a[1]++)

{

for (a[2]=0;a[2]<2;a[2]++)

{

for (a[3]=0;a[3]<2;a[3]++)

{

for (a[4]=0;a[4]<2;a[4]++)

{

for (a[5]=0;a[5]<2;a[5]++)

{

for (a[6]=0;a[6]<2;a[6]++)

         {

         for (a[7]=0;a[7]<2;a[7]++)

      {

     {

      for (a[8]=0;a[8]<2;a[8]++)

   {

   for (a[9]=0;a[9]<2;a[9]++)

     

      {

       int sum =10 ;

        for (i=0;i<10;i++)

{

if(a[i]==1)

 {

  sum= 2 *sum;

 }

if(a[i]==0)

{

sum=sum-i-1;

}

}

if (sum==100)

{

for  (i=0;i<10;i++)

 {

  printf("%d",a[i]);

             }

  printf("\n");

}

     

     

   }

     

 

}

    }

    }

       }

        }

   }

}

}

}

}

return 0 ;

}

 #include"stdio.h"
#include"string.h"


 int a[11];


void f(int score,int n)  
{  
    if(score==100&&n==11)  // 递归结束条件  
     { 
  for(int i=1;i<=10;i++)  
         printf("%d",a[i]);
        printf("\n"); 
        return;  
     }  
    if(n>11)  
     return;   
     
     a[n]=1;  
     f(score*2,n+1);   //描述递归关系吧当前调用 与下一次调用的关系  
     a[n]=0;  
     f(score-n,n+1);  
      
}  


int main()
{
int i;
for ( i=0 ;i<10;i++)
{     a[i]=0;  
}
  f(10,1) ;
return 0 ;

}


 结果

 





/* 


2.标题:等差素数列




2,3,5,7,11,13,....是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。




2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!




有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:




长度为10的等差素数列,其公差最小值是多少?




注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
------------------------------*/ 
#include "stdio.h" 
long long int b[1000010];
long long int a[1000010];
long long int  suhushai(long long int  n)
{
     
b[0]=0;
b[1]=0;
b[2]=1;
long long int i;
long long int j;
for (i=3;i<=n;i++)
{
b[i]= 1;
}
for (i=2;i<=n;i++)
{
if(b[i]==0)
{
continue;

for (j = 2;j*i<=n;j++)
{
 
  b[j*i]=0;    
}

}
j=0;
for (i=1;i<n;i++)
{
 if (b[i]==1)
  a[j++] =i;

}
return j;

}


int main()
{   
    long long int tol;
tol=suhushai(1000000);
long long int d=1;
long long int i;
int k;
int flag=1 ;
for (d=1;d <1000000&&flag==1;d++)
{
for (i=0;i<tol;i++)
{
for (k=0;b[ a[i]+k*d ]==1;) 
   {   
        k++;  
        }
          if ( k>=9 )
      {  
         printf("%lld \n",d);


              flag=0;
              break;
 }       
}
 
    }
return 0;

}  



### 回答1: 蓝桥测试数据大小为60.06 MB。数据的大小通常是指数据占用的存储空间大小。在计算机中,数据以二进制的形式存储,每个二进制位(位)可以表示一个0或1,8个二进制位组成一个字节(Byte)。因此,60.06 MB表示数据占用了60.06兆字节的存储空间。 蓝桥测试数据大小为60.06 MB,换算成比特(Bits)为480.48兆比特(Mb)。MB(兆字节)和Mb(兆比特)之间的转换关系是:1兆字节(MB)= 8兆比特(Mb)。所以,60.06 MB乘以8得到480.48 Mb。 可以根据数据的大小来估计需要的存储空间和传输时间。传输时间取决于网络速度和文件大小。网络速度通常以比特每秒(bps)或兆比特每秒(Mbps)为单位。如果网络速度是1 Mbps,将60.06 MB转换成比特(Bits),并除以1 Mbps,可以得到传输该数据所需的时间。根据计算,以1 Mbps的传输速度传输60.06 MB的数据需要约480.48秒。 综上所述,蓝桥测试数据大小为60.06 MB,换算成比特为480.48 Mb。传输该数据所需的时间取决于网络速度,根据1 Mbps的传输速度估计,大约需要480.48秒。 ### 回答2: 蓝桥测试数据的大小为60.06MB。MB是存储容量的单位,表示兆字节。60.06MB大约相当于60060000字节。这个大小可以用来评估蓝桥测试数据的存储需求。根据文件类型和内容的不同,60.06MB可以容纳不同数量和大小的文件。例如,对于文本文件而言,这个大小可以容纳非常大的文本文件,大约相当于60000页的纸质文档。对于音频文件或视频文件而言,这个大小可能只能容纳数分钟的内容,具体取决于文件的编码和比特率。总的来说,60.06MB的大小在当前计算机及存储技术下不算特别大,但也不小。根据具体的使用场景和需要,我们可以相应地调整存储设备的容量,以便满足对蓝桥测试数据的存储和传输需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值