标注猿的第83篇原创
一个用数据视角看AI世界的标注猿
大家好,我是AI数据标注猿刘吉,一个用数据视角看AI世界的标注猿。
上一篇文章标注时代:DeepSeek带给数据标注行业的启示在行业内算是爆火了一把,也非常荣幸获得了国家数据局、省市数据局领导的认可和关注,并且基于文章的思路给国家数据局的领导单独写一篇汇报文章。实现了我做公众号的初心可以为行业的发展做到力所能及的助力。
文章的爆火让公众号的粉丝关注突破1.1万人,覆盖了政府领导、投资人、客户方、学校、供应商、标注人员、学生等多方面人员,单篇文章阅读突破1.4万,转发超过1500次。作为一个目前相对小众的行业能有如此的关注度,真的非常开心。
做公众号的知识分享的确是一个耗时费力的过程,一转眼已经是第5年了,积累了很多文章的同时也沉淀下来一个行业内为数不多的高价值的纯净的行业社区。但由于粉丝关注的增多,每天咨询的小伙伴也非常多,有很多没有及时回复的还请见谅。当然也有很多小伙伴咨询交流完就没有深入交流或者合作了还是挺可惜的。
所以为了更好的帮助服务大家,同时积累下来行业可以深入合作的小伙伴,并且基于行业发展做更多的尝试,在接下来我会对公众号和社区提供一些商业化的服务。基于目前的小伙伴的需求,首先提供的是数据服务行业的1V1咨询服务,内容可以覆盖数据标注、内容审核、客服、残保金优化4大业务。包含但不限于行业发展、基地建设运营、校企合作、职业证书考试培训、业务培训、运营管理、技术实现、降本增效等不涉及到商业机密的问题解答。如果有感兴趣的小伙伴可以私信我。
在国家大力发展数据可信空间的同时数据生产合作伙伴的可信也非常重要。
言归正传,在国家的大力推动下,行业在蓬勃发展。2月26日,在长沙市国家数据标注基地建设成果发布暨2025年全省数据标注供需对接大会在湖南大数据交易所举办,就达成了4.6亿元的数据标注订单。这个效果是非常显著的。并且从今年年初的形式来看项目需求的确增加了很多,对于所有人来说是很大的机遇,但标注行业固有的需要解决和思考的问题依旧存在。
本文就从行业发展的角度,梳理数据标注行业发展所面临的4大问题以及思考,一方面是给新入行的小伙伴做一个入行的切入点参考,另一方面给正在做这个行业的小伙伴提供一个思路,也欢迎小伙伴们留言讨论。
-
讲不好故事
-
做不了技术
-
压不下成本
-
垫不起费用
一.讲不好故事
讲不好故事可能对于数据标注行业80%的供应商公司都没有什么太大的影响,大部分公司还是把标注当成外包项目在做,所以说对于是否能讲好故事对于他们不重要,重要的是有没有项目能给他们做,有没有好项目给他们,再就是有没有更好的项目给他们了。
但是对于头部公司和行业发展有着至关重要的影响。
要想讨论这个行业是否能讲好故事,我们还要从数据标注的本质开始讨论:
1.从定义的角度:对文本、语音、图片、视频等多样化的数据进行处理,为其添加标签或注释,以便机器学习算法能够理解和利用这些数据。无论怎么解释标注就是把非结构话数据变成结构话数据的过程,对于人类来说就是QA的过程。
2.从业务的角度:数据标注是人工智能训练的一个环节,而这波人工智能最核心要解决的问题就是把非结构的数据可以通过AI进行处理获取有效信息并进行在应用场景使用。但这类数据包含的信息庞大却不与商业价值直接挂钩。
3.从数据要素的角度:在数据经济中,数据要素占有重中之重的地位。数据标注本应是贯穿"采-标-存-治-用"全链条的核心枢纽,却在交易定价环节陷入价值认知的泥潭。
从上面三个角度来看,可以分析出数据标注要讲好故事的三个主要维度:
1.工具维度:从定义里面我们可以很清晰的知道,就是要做两件事,
-
要满足现有业务需求的标注工具。
-
如何提高或者优化工具的高效率、易用性、便捷性。而要想实现第二点就需要引入算法进行辅助。
而算法优化的过程也可以分为三个方面:一标注前的清洗、分类等。二.标注中的预标注、辅助标注、半自动标注等。三.标注后的自检、辅助质检等。
2.业务流程:从业务本质的角度,我们可以了解数据标注作为AI发展的重要一环,起到的是一个承上启下的作用。这个部分主要也是做三件事,
-
基于标注、技术、业务流程的优化,例如标注流程的"采-标-检-管";
-
业务流程的优化比如多渠道人员的参与,残健职场、产教结合、政企合作、以监狱为代表的极低成本模式等等;
-
技术的垂直领域辅助标注算法、多渠道算法接入技术等;
3.标注价值:从原始数据到可交易的数据资产,需要经历数据资源化(标注加工)、资源产品化(质量分级)、产品资产化(权属定价)三大跃迁。而数据标注正是决定跃迁成功率的关键。这部分就可以看出要做三个事情。
-
要明确数据通过标注后的"可用性阈值"。
-
质量评估的“价值分层”。
-
明确定价锚点。
不管是算法也好,还是标注也好,都离真正的经济价值都有一点距离。就比如所现阶段我们说所的AI更多的价值是“降本增效”,而不像推荐算法阶段可以更直接的定向满足需求,从而产生经济价值。
这样看来,数据标注行业要真正的讲好故事,是否更像是算法价值和数据价值之间博弈呢?
二.做不了技术
标注行业目前应该至少80%的供应商是没有从技术的角度来考虑公司的发展。这也是可以理解的,从技术的角度来做标注行业的确也是有很多痛点。这部分我们从两个角度去分析:
1.技术角度的现状:
从目前的技术发展来看,大家更多的是从3个类型的标注来去做研发:
-
标注工具:标注工具的逻辑比较简单,大部分都是基于开源工具的二次开发,这部分除了自动驾驶点云部分工具开发难度稍微大一点之外,其他的标注工具需求难度都不是很大,而且基于一些开源工具做二次开发即可。对于标注工具复杂些的是基于标注工具的项目流程管理部分。
大部分中小微的标注公司,目前是已经可以使用上一些开源标注工具,或者基于二次开发的标注工具。
在稍微有实力一点的中大型标注公司或数据标注平台类公司是有完整的基于标注及人员管理流程的标注平台工具。
-
标注算法:标注算法对于目前大部分标注供应商公司来说是望尘莫及的,更多的是有技术出身背景的标注公司和真正走融资路线的标注公司在做的事情。
在DeepSeek没有出现之前,我是认为类DeepSeek的算法是可以从数据行业杀出来的,毕竟数据标注行业接触到的是前沿的应用和数据。
但当DeepSeek出现后,才意识到两个问题一是在这个行业真正做算法的牛人还是有限,二是行业现有的利润想支撑做前沿的研发不太现实,寻找投资的难度比较大。
-
标注项目管理看板:这部分的管理系统也相对比较容易一些的,属于是公司内部的管理工具,通过对单一支撑或多支撑的日常人员管理,来增加项目收益。这部分也是目前标注公司最容易也是投资最小见效最快的技术方案了。
2.技术发展的痛点
目前对于技术发展还有很多待解决的痛点,我们从以下2个大方面进行分析:
a.技术现状痛点:
-
-
数据标注定义的局限
就如数据标注定义的那样,数据标注是通过结构化处理,将人类知识转化为机器可识别的语义标签的过程。但从AI世界的角度而言,其本质是是在构建AI的"认知坐标系"。以自动驾驶为例,标注员不仅需要框选车辆,还需理解遮挡关系、运动趋势等隐性知识,相当于为机器编写视觉认知的"语法规则"。这种认知编码的深度,决定了算法理解世界的维度。
-
技术分层的撕裂
当前行业呈现"金字塔式"技术分布:
-
底座层:80%的通用标注仍依赖人工操作,如基础的图像框选、文本分类,人力成本占比超60%;
-
中间层:15%的半自动化标注结合AI预标注工具,但需人工二次校验,效率提升有限;
-
尖端层:仅5%的高精度标注(如医疗影像病灶分割)需要专家级标注员,日均处理量不足百条;
这种分层导致技术演进呈现"头重脚轻"态势——头部企业研发自动化工具,中小厂商困于人力红海。
-
-
技术应用的滞后
需求升级与工具滞后的矛盾,随着多模态大模型兴起,标注需求从单一模态向跨模态关联标注跃迁。例如,自动驾驶场景需同步处理激光雷达点云、摄像头图像、毫米波雷达信号的时空对齐标注,但现有工具仍以单模态标注为主,跨模态标注效率骤降40%。工具迭代速度远落后于技术需求演进,形成"技术代差"。
-
b.技术发展痛点:
-
-
技术难度三重门
-
数据复杂性:非结构化数据占比超80%,标注过程需破解"语义鸿沟"。如医疗影像中,同一病灶在不同成像模态(CT/MRI/PET)中的表现差异,要求标注工具具备多模态融合处理能力;
-
标注-算法迭代:标注质量依赖算法反馈,但算法优化又需要更高质量标注,形成"死循环";
-
标准体系缺失:行业缺乏统一的标注质量评估体系,不同企业标注结果兼容性差。如自动驾驶领域,L4级车辆要求的标注精度达99.99%,但各厂商验收标准差异导致30%标注数据无法复用;
-
-
成本投入困局
-
工具研发成本:开发一个支持多模态标注的自动化平台,前期投入超千万元,但客户付费意愿仅覆盖成本的15%;
-
人才培训隐性成本:培养一个能处理复杂标注任务的"超级标注员",需投入6-8个月专项培训,人员流失率却高达45%;
-
试错成本不可控:在自动驾驶标注中,一次标注错误可能导致百万级仿真训练数据污染,某企业因标注坐标偏移0.5像素,损失超大几百万元;
-
-
“质量-效率-成本”循环三角
行业陷入"质量-效率-成本"的恶性循环:
-
追求标注质量(如医学影像标注)需牺牲效率(日均处理量下降70%);
-
提升效率依赖自动化工具,但初期投入使中小企业望而却步;
-
压缩成本导致标注质量滑坡,形成"低成本-低质量-低溢价"的死亡螺旋
-
-
如何打破"技术自卑"与"工具依赖"的双重枷锁?或许数据标注才能从"AI的体力工"进化为"智能时代的认知工程师"。
三.压不下成本
数据标注行业长期陷入"技术升级投入高、人力成本压缩难"的螺旋式困局。从技术升级的投入产出比失衡,到人力市场的结构性矛盾,成本控制已成为企业生存的核心命题。
这部分我们从技术困局与人力特性,从技术价值与人力效能两个维度展开讨论分析。
a.技术升级的成本难题:投入产出比失衡的恶性循环
-
-
技术投入困局
数据标注技术升级涉及自动化工具研发、AI预标注系统部署、多模态标注平台搭建等环节,单家企业前期研发投入常超千万元。但技术回报周期长达3-5年,且客户对技术附加值的付费意愿不足(仅覆盖成本15%-20%),导致多数企业陷入"投入即亏损"的困境。例如开发支持3D点云与图像时空对齐的标注工具,研发费用超千万元,但客户仅愿为标注效率提升支付10%溢价,投资回收期被迫延长至6年。
-
技术价值的"隐性变现"困境
技术升级虽能提升标注质量(如医疗影像标注精度从95%提至99%可使模型灵敏度提升22%),但行业缺乏价值传导机制:
-
算法需求方将标注视为标准化服务,拒绝为质量提升支付额外费用;
-
数据交易方按数据量计价,未建立"标注质量-模型效果-商业价值"的关联定价模型;
-
技术溢价被产业链上下游截留,标注企业沦为"技术价值搬运工"。
-
-
b.人力成本的需求矛盾:廉价劳动力与专业需求的割裂
-
-
低成本人力的"虚假红利"
行业普遍采用"下沉市场+分包"模式获取廉价劳动力(如三四线城市标注员成本较一线城市低40%,但面临两大反噬:
-
质量成本隐性攀升:低技能标注员错误率高达15%-20%,返工成本抵消人力价差。因标注错误导致仿真训练失效,损失超大几百万元;
-
管理成本激增:分散劳动力需额外投入20%-30%成本用于质量监控与流程管理,部分企业开发AI质检系统的投入甚至超过人力节省总额.
-
-
专业需求的"人才断层"
随着标注需求向知识密集型转型(如医疗标注需医学背景、工业质检需工程经验),专业人才缺口扩大:
-
培养成本高企:培养一名能处理复杂标注任务的"超级标注员"需6-8个月专项培训,人均成本超3万元,但流失率高达45%;
-
供需错配加剧:长沙2025年发布的1.02万个标注岗位中,60%要求具备行业专业知识,但实际应聘者合格率不足30%。某医疗AI企业为招募放射科背景标注员,薪资开至行业均值的2倍仍难满足需求。
-
-
如何通过技术杠杆撬动人力价值,用专业能力对冲成本压力,成本管控将不再是零和博弈,或许是开启价值增长的密钥。
四.垫不起费用
数据标注行业最大的成本就是人力成本,由于项目回款周期的问题。企业往往需要垫付3-6个月的资金以维持项目运转。这种资金链的紧绷状态,不仅限制了技术升级和业务拓展,更将大量中小企业推向生存边缘。
这部分就从融资环境、成本结构、回款周期三个维度来进行分析:
a.融资环境
-
-
融资渠道狭窄化
尽管数据标注市场规模持续扩大(预计2025年突破200亿元),但资本更倾向于投资头部企业或技术平台。2024年数据显示,80%的融资事件集中于拥有自动化标注技术的企业,而传统人力密集型标注企业仅获得不足5%的资本关注。但"投资机构对我们的评估标准已从'业务规模'转向'技术壁垒',没有自研工具的企业很难获得融资"。
-
政策扶持
虽然国家出台《关于促进数据标注产业高质量发展的实施意见》等政策,明确提出支持数据标注基地建设和技术创新,但基层执行存在偏差。例如承诺的税收优惠需满足"年产值超5000万元"门槛,而当地90%企业年营收不足1000万元,政策红利难以触达。
-
数据资产
尽管标注数据集价值凸显(如医疗影像标注数据交易价可达普通数据3倍),但金融机构仍将其视为"无形资产"难以质押。例如尝试以价值8000万元的自动驾驶标注数据集融资,银行仅愿按20%估值授信,且要求法人连带担保。
-
b.成本投入
-
-
技术投入的沉没成本
标注工具研发需持续烧钱,但客户对技术溢价接受度不足。
-
人力成本刚性攀升
行业正经历人力结构转型:
-
低端人力:传统标注员日薪从120元涨至150元,但错误率仍达15%;
-
专业人力:医疗标注专家月薪突破3万元;
-
管理成本:分布式团队质检系统建设费用占人力总支出的25%;
-
-
成本转嫁
企业为压缩成本采取"下沉市场+分包"模式,但引发连锁反应:
-
返工成本超节省额;
-
为降低流失率,企业被迫将标注员社保缴纳比例从60%提至100%,人力成本激增30%;
-
-
c.回款周期
-
-
行业惯例的账期
-
自动驾驶厂商验收周期长达6-12个月;
-
平均账期也在3-6个月;
-
-
大客户的“马太效应”
头部AI企业凭借议价权延长账期:
-
结算周期从45天延长至90天。
-
大部分承接大厂项目后,应收账款占流动资产比例占比较高。
-
-
坏账的隐形成本
数据标注行业的坏账和其他行业的坏账还有些区别,标注的结果质检、合规审查严格等受客户制约,会因多方面原因不达标被拒付。
-
当行业建立起"技术造血+资本赋能+账期优化"的三角支撑体系,数据标注企业才能跳出"垫资-亏损-倒闭"的恶性循环,在AI产业的价值链中真正站稳脚跟。这场关乎生存的现金流战役,本质是对行业价值认知的重构——只有当标注数据被视为"生产资料"而非"成本项",资本与产业的关系才能实现根本性逆转。
以上就是对数据标注行业内企业发展4大痛点的梳理。欢迎小伙伴们留言交流。最后打一个广告,欢迎小伙伴们合作交流。
相关文章阅读:
-----------------------完----------------
公众号:AI数据标注猿
知乎:AI数据标注猿
CSDN:AI数据标注猿
---------------完----------------