关于离散平稳信源的扩展信源的简单性质的练习题目(扩展信源划重点

  • 如果两个符号的二次扩展信源不太明白,不妨看看这篇~

  • 设有一个信源,它产生 0 , 1 0,1 0,1 序列的消息。它在任意时间而且以前发生过什么符号,均按 P ( 0 ) = 0.4 , P ( 1 ) = 0.6 P(0)=0.4,P(1)=0.6 P(0)=0.4,P(1)=0.6 的概率发出符号。
    (1) 试问这个信源是否平稳的?
    (2) 试计算 H ( X 2 ) , H ( X 3 / X 1 X 2 ) H(X^2),H(X_3/X_1X_2) H(X2),H(X3/X1X2) lim ⁡ N → ∞ H N ( X ) \displaystyle \lim_{N\rightarrow\infty}H_N(\pmb{X}) NlimHN(XXX)
    (3) 试计算 H ( X 4 ) H(X^4) H(X4) 并写出 X 4 X^4 X4 信源中可能有的所有符号。
  • 解:
    (1) 根据题意,此信源在任何时刻发出的符号概率都是相同的,均按 P ( 0 ) = 0.4 , P ( 1 ) = 0.6 P(0)=0.4,P(1)=0.6 P(0)=0.4,P(1)=0.6 ,即信源发出符号的概率分布与时间平移无关,而且信源发出的序列之间也是彼此无依赖的。所以这信源是平稳信源,而且是离散无记忆信源。
    (2) 此离散无记忆信源为
    [ X P ( x ) ] = [ 0 1 0.4 0.6 ] \left[ \begin{matrix} X \\ P(x) \end{matrix} \right] = \left[ \begin{matrix} 0 &1 \\ 0.4&0.6 \end{matrix} \right] [XP(x)]=[00.410.6]
    可计算得
    H ( X ) = − ( 0.4 l o g 0.4 + 0.6 l o g 0.6 ) = 0.971 比 特 / 符 号 H(X)=-(0.4log0.4+0.6log0.6)=0.971\quad 比特/符号 H(X)=(0.4log0.4+0.6log0.6)=0.971/
    因为信源是平稳无记忆信源,信源输出序列之间无依赖,所以
    H ( X 2 ) = 2 H ( X ) ≈ 1.94 比 特 / 两 个 符 号 H ( X 3 / X 1 X 2 ) = H ( X 3 ) = H ( X ) ≈ 0.971 比 特 / 符 号 lim ⁡ N → ∞ H N ( X ) = lim ⁡ N → ∞ 1 N H ( X 1 X 2 ⋯ X N ) = lim ⁡ N → ∞ 1 N ⋅ N ⋅ H ( X ) = H ( X ) ≈ 0.971 比 特 / 符 号 H(X^2)=2H(X)\approx1.94\quad 比特/两个符号\\ H(X_3/X_1X_2)=H(X_3)=H(X)\approx0.971\quad比特/符号\\ \begin{aligned} \lim_{N\rightarrow\infty}H_N(\pmb{X})=&\lim_{N\rightarrow\infty}\frac{1}{N}H(X_1X_2\cdots X_N)\\ =&\lim_{N\rightarrow\infty}\frac{1}{N}\cdot N\cdot H(X)\\ =&H(X)\approx0.971\quad 比特/符号 \end{aligned} H(X2)=2H(X)1.94/H(X3/X1X2)=H(X3)=H(X)0.971/NlimHN(XXX)===NlimN1H(X1X2XN)NlimN1NH(X)H(X)0.971/
    (3) H ( X 4 ) = 4 H ( X ) ≈ 3.88 比 特 / 四 个 符 号 H(X^4)=4H(X)\approx3.88\quad 比特/四个符号\\ H(X4)=4H(X)3.88/
    X 4 X^4 X4 信源中可能的所有符号是四位二进制排序,即有 16 16 16 种符号
    0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 \begin{matrix} 0000 & 0001 & 0010 & 0011\\ 0100&0101&0110&0111\\ 1000&1001&1010&1011\\ 1100&1101&1110&1111 \end{matrix} 0000010010001100000101011001110100100110101011100011011110111111
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值