- 求
E
→
\overrightarrow{E}
E
E → = ∫ d E → = 1 4 π ε 0 ∫ d q r 2 r ⃗ ^ \overrightarrow{E}=\int d\overrightarrow{E}=\frac{1}{4\pi\varepsilon_0}\int \frac{dq}{r^2}\hat{\vec{r}} E=∫dE=4πε01∫r2dqr^
∯ S E → ⋅ d S → = 1 ε 0 ∑ S 内 q \oiint_{S} \overrightarrow{E} \cdot d\overrightarrow{S}=\frac{1}{\varepsilon_0}\sum_{S内}q ∬SE⋅dS=ε01S内∑q
E → = − ∇ U \overrightarrow{E}=-\nabla{U} E=−∇U - 求
U
U
U
U = ∫ P ∞ E → ⋅ d l ⃗ U=\int_{P}^{\infty}\overrightarrow{E}\cdot d\vec{l} U=∫P∞E⋅dl
U = ∫ d U = 1 4 π ε 0 ∫ d q r U=\int dU=\frac{1}{4\pi\varepsilon_0}\int \frac{dq}{r} U=∫dU=4πε01∫rdq
静电场求电场强度E和电势U的方法
最新推荐文章于 2020-12-11 10:58:59 发布