静电场求电场强度E和电势U的方法

  • E → \overrightarrow{E} E
    E → = ∫ d E → = 1 4 π ε 0 ∫ d q r 2 r ⃗ ^ \overrightarrow{E}=\int d\overrightarrow{E}=\frac{1}{4\pi\varepsilon_0}\int \frac{dq}{r^2}\hat{\vec{r}} E =dE =4πε01r2dqr ^
    ∯ S E → ⋅ d S → = 1 ε 0 ∑ S 内 q \oiint_{S} \overrightarrow{E} \cdot d\overrightarrow{S}=\frac{1}{\varepsilon_0}\sum_{S内}q SE dS =ε01Sq
    E → = − ∇ U \overrightarrow{E}=-\nabla{U} E =U
  • U U U
    U = ∫ P ∞ E → ⋅ d l ⃗ U=\int_{P}^{\infty}\overrightarrow{E}\cdot d\vec{l} U=PE dl
    U = ∫ d U = 1 4 π ε 0 ∫ d q r U=\int dU=\frac{1}{4\pi\varepsilon_0}\int \frac{dq}{r} U=dU=4πε01rdq
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值