白话经典算法系列之六 快速排序 快速搞定

今天源码共读话题是快速排序,可是我觉得原文说的不够清晰,就在网上找了这篇博文,写的很清楚,小白都能快速掌握快排,在这里转载一下,非常感谢原博主的分享http://blog.csdn.net/morewindows/article/details/6684558

快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用,再加上快速排序思想----分治法也确实实用,因此很多软件公司的笔试面试,包括像腾讯,微软等知名IT公司都喜欢考这个,还有大大小的程序方面的考试如软考,考研中也常常出现快速排序的身影。

总的说来,要直接默写出快速排序还是有一定难度的,因为本人就自己的理解对快速排序作了下白话解释,希望对大家理解有帮助,达到快速排序,快速搞定

 

快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。

该方法的基本思想是:

1.先从数列中取出一个数作为基准数。

2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。

3.再对左右区间重复第二步,直到各区间只有一个数。

 

虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤。因此我的对快速排序作了进一步的说明:挖坑填数+分治法

先来看实例吧,定义下面再给出(最好能用自己的话来总结定义,这样对实现代码会有帮助)。

 

以一个数组作为示例,取区间第一个数为基准数。

0

1

2

3

4

5

6

7

8

9

72

6

57

88

60

42

83

73

48

85

初始时,i = 0;  j = 9;   X = a[i] = 72

由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。

从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++;  这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;

 

数组变为:

0

1

2

3

4

5

6

7

8

9

48

6

57

88

60

42

83

73

88

85

 i = 3;   j = 7;   X=72

再重复上面的步骤,先从后向前找,再从前向后找

从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;

从i开始向后找,当i=5时,由于i==j退出。

此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。

 

数组变为:

0

1

2

3

4

5

6

7

8

9

48

6

57

42

60

72

83

73

88

85

可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。

 

对挖坑填数进行总结

1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。

2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。

3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。

4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。

照着这个总结很容易实现挖坑填数的代码:

int AdjustArray(int s[], int l, int r) //返回调整后基准数的位置  
{  
    int i = l, j = r;  
    int x = s[l]; //s[l]即s[i]就是第一个坑  
    while (i < j)  
    {  
        // 从右向左找小于x的数来填s[i]  
        while(i < j && s[j] >= x)   
            j--;    
        if(i < j)   
        {  
            s[i] = s[j]; //将s[j]填到s[i]中,s[j]就形成了一个新的坑  
            i++;  
        }  
  
        // 从左向右找大于或等于x的数来填s[j]  
        while(i < j && s[i] < x)  
            i++;    
        if(i < j)   
        {  
            s[j] = s[i]; //将s[i]填到s[j]中,s[i]就形成了一个新的坑  
            j--;  
        }  
    }  
    //退出时,i等于j。将x填到这个坑中。  
    s[i] = x;  
  
    return i;  
}  
再写分治法的代码:

void quick_sort1(int s[], int l, int r)  
{  
    if (l < r)  
    {  
        int i = AdjustArray(s, l, r);//先成挖坑填数法调整s[]  
        quick_sort1(s, l, i - 1); // 递归调用   
        quick_sort1(s, i + 1, r);  
    }  
}  
这样的代码显然不够简洁,对其组合整理下:

//快速排序  
void quick_sort(int s[], int l, int r)  
{  
    if (l < r)  
    {  
        //Swap(s[l], s[(l + r) / 2]); //将中间的这个数和第一个数交换 参见注1  
        int i = l, j = r, x = s[l];  
        while (i < j)  
        {  
            while(i < j && s[j] >= x) // 从右向左找第一个小于x的数  
                j--;    
            if(i < j)   
                s[i++] = s[j];  
              
            while(i < j && s[i] < x) // 从左向右找第一个大于等于x的数  
                i++;    
            if(i < j)   
                s[j--] = s[i];  
        }  
        s[i] = x;  
        quick_sort(s, l, i - 1); // 递归调用   
        quick_sort(s, i + 1, r);  
    }  
}  

快速排序还有很多改进版本,如随机选择基准数,区间内数据较少时直接用另的方法排序以减小递归深度。有兴趣的筒子可以再深入的研究下。

 

注1,有的书上是以中间的数作为基准数的,要实现这个方便非常方便,直接将中间的数和第一个数进行交换就可以了。

--------------------------------------复杂度分析---------------------------------------

时间复杂度

        快速排序涉及到递归调用,所以该算法的时间复杂度还需要从递归算法的复杂度开始说起;
        递归算法的时间复杂度公式:T[n] = aT[n/b] + f(n)  ;对于递归算法的时间复杂度这里就不展开来说了;

最优情况下时间复杂度

         快速排序最优的情况就是每一次取到的元素都刚好平分整个数组
        此时的时间复杂度公式则为:T[n] = 2T[n/2] + f(n);T[n/2]为平分后的子数组的时间复杂度,f[n] 为平分这个数组时所花的时间;
        下面来推算下,在最优的情况下快速排序时间复杂度的计算(用迭代法):
                                          T[n] =  2T[n/2] + n                                                                     ----------------第一次递归

                 令:n = n/2        =  2 { 2 T[n/4] + (n/2) }  + n                                               ----------------第二次递归

                                            =  2^2 T[ n/ (2^2) ] + 2n

                令:n = n/(2^2)   =  2^2  {  2 T[n/ (2^3) ]  + n/(2^2)}  +  2n                         ----------------第三次递归  

                                            =  2^3 T[  n/ (2^3) ]  + 3n

                ......................................................................................                        

                令:n = n/(  2^(m-1) )    =  2^m T[1]  + mn                                                  ----------------第m次递归(m次后结束)

               当最后平分的不能再平分时,也就是说把公式一直往下跌倒,到最后得到T[1]时,说明这个公式已经迭代完了(T[1]是常量了)。

               得到:T[n/ (2^m) ]  =  T[1]    ===>>   n = 2^m   ====>> m = logn;

               T[n] = 2^m T[1] + mn ;其中m = logn;

               T[n] = 2^(logn) T[1] + nlogn  =  n T[1] + nlogn  =  n + nlogn  ;其中n为元素个数

               又因为当n >=  2时:nlogn  >=  n  (也就是logn > 1),所以取后面的 nlogn;

               综上所述:快速排序最优的情况下时间复杂度为:O( nlogn )


最差情况下时间复杂度

        最差的情况就是每一次取到的元素就是数组中最小/最大的,这种情况其实就是冒泡排序了(每一次都排好一个元素的顺序)

     这种情况时间复杂度就好计算了,就是冒泡排序的时间复杂度:T[n] = n * (n-1) = n^2 + n;

     综上所述:快速排序最差的情况下时间复杂度为:O( n^2 )


平均时间复杂度

        快速排序的平均时间复杂度也是:O(nlogn)

空间复杂度

        其实这个空间复杂度不太好计算,因为有的人使用的是非就地排序,那样就不好计算了(因为有的人用到了辅助数组,所以这就要计算到你的元素个数了);我就分析下就地快速排序的空间复杂度吧;
        首先就地快速排序使用的空间是O(1)的,也就是个常数级;而真正消耗空间的就是递归调用了,因为每次递归就要保持一些数据;
     最优的情况下空间复杂度为:O(logn)  ;每一次都平分数组的情况
     最差的情况下空间复杂度为:O( n )      ;退化为冒泡排序的情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值