题目虽然是这么写
但我被卡了一个多小时……
然而有很多小伙伴说:“我花了10分钟就写出来了呀”
(泪)
其实此题就是考察……德摩根律
先回顾一下题目:
有n项工作,每项工作分别在sisi时间开始,在titi时间结束。对于每项工作,你都可以选择参与与否。如果选择了参与,那么自始至终都必须全程参与。此外,参与工作的时间段不能重叠(闭区间)。你的目标是参与尽可能多的工作,那么最多能参与多少项工作?其中1⩽N⩽1000001⩽N⩽100000并且1⩽si⩽ti⩽1091⩽si⩽ti⩽109。(from《挑战程序设计竞赛 P40》)
输入样例:1 2 4 6 8
3 5 7 9 10
输出样例:
3
也就是要求“不重合的最大覆盖”
这话怪变扭的
其实就是
我们假设时间是一条线
有5份工作
他们什么时候开始、什么时候结束,分别储存在两个数组中(S、T)
不妨把每份工作也看作一条条线
要他们互不侵犯——也就是线不能覆盖线啦
如果严格来讲得的话
就是,假设任取两条线line1、line2
line1的起始点为s1,终结点为t1
line2的起始点为s2,终结点为t2
那么,如果重合,就要分四种情况,这太不友好啦(我一开始就是这么写的……结果就卡在判断上了)
众所周知,计算机擅长二元问题……
所以,正着求弄不出来,就求补集嘛
就很简单了,只要,s1<s2 AND t1<s2
用sort解决前后顺序
然后将线段储存在线性的二维结构-pair中(x,y)
逐个比较即可
代码如下
#include "iostream"
#include "algorithm"
using namespace std;
const int MAX_N = 100000;
int N = 5, S[MAX_N], T[MAX_N] ;
int i;
pair<int, int> itv[MAX_N];
void solve() {
for (i = 1;i <= N;i++)
{
cin >> S[i];
}
for (i= 1;i <= N;i++)
{
cin >> T[i];
}
for (int i = 1; i <= N; i++) {
itv[i].first = T[i];
itv[i].second = S[i];
}
sort(itv, itv + N);
int ans = 0, t = 0;
for (int i = 1; i <= N; i++) {
if (t < itv[i].second) {
ans++;
t = itv[i].first;
}
}
cout << ans << endl;
}
int main() {
solve();
}