使用BrainnetViewer展示脑连接(包括制作edge)

BrainnetViewer的示意图如下
脑连接:
脑连接

前言

实际上用BrainNetViewer来展示连接或脑区的人已经越来越少了,因为一旦连接增多,表示就非常不清晰。但作为一个经典的软件,还是有必要去了解。配置就不多说了,直接进入正题
点击load file:
在这里插入图片描述
可以看到有四个可以导入文件的地方

脑连接

如果要展示脑连接,我们只需要去制作Data file (node) 和 Data file (edge)
然后导入标准的脑模版(surface),就可以展示出连接。

  1. Surface file, 这都是自带的,在你下载BrainNetViewer的文件夹里可以看到。
    在这里插入图片描述
    选哪个其实都无所谓,我习惯选这个152smoothed的。
  2. node文件,首先node文件是.node结尾的,官方文件夹里也有
    在这里插入图片描述
    但众所周知,脑区模版不一定只有这么几个,如果你想用别的脑区node模版,就需要自己制作一个。
    node文件实际上也是文本写的,是可以打开看的,打开之后发现它的格式是
    在这里插入图片描述
X Y Z Value Size Label

所以同样的要写个代码制作这样的模版,首先要知道X Y Z是多少
这里的XYZ是指你的模版在标准脑上的坐标点(平均后的),也就是通过一个点来代表一个脑区。
这个文件在你的分割模版的网站上可以下载。我的模版中是里面有文件夹每个文件夹包括N个(脑区数量)txt,每一个打开都是密集的点坐标。
代码我就不展示了,有需要的直接让GPT给你写。通过计算每一个txt的平均值可以得到点坐标,然后脑区的名字你在自己的文档中也可以找得到。
3. 制作edge
相对来讲我觉得边是更重要的,因为大多数人都在用那几个node,但边肯定都是自己想展示的

import numpy as np

#给出边的坐标(FC)得到可以用于Brainnet Viewer的矩阵
#Brainnet Viewer的矩阵的意思就是在这个边的位置置1 其它为0
def save_edge(points):
# Dimensions of the array
    width, height = 200,200 #假设你的模版将脑子分割成了200个脑区,那么功能连接矩阵的大小就是200x200
    # Initialize the array with zeros
    array = np.zeros((height, width), dtype=int)
    # List of points to set as 
# Set the specified points to 1
    for x, y in points:
        array[y, x] = 1  # Note: numpy arrays are accessed as array[y, x]
    # Write the array to a txt file
    return array
output_file_path = '/xxxx.edge'
points = [(189, 101),
(137, 199),
若干个]
array = save_edge(points)
np.savetxt(output_file_path, array, fmt='%d')

导入三个文件即可展示连接

### 使用BrainNetViewer生成热图 在神经影像学研究中,BrainNetViewer是一个强大的工具用于三维网络可视化[^1]。为了利用此软件生成热图,通常涉及以下几个方面的操作: - **安装与配置**:确保已经正确安装了BrainNetViewer及其依赖项。这可能涉及到MATLAB环境的设置,因为BrainNetViewer基于MATLAB开发。 - **准备输入文件**:对于想要可视化的数据,比如功能连接矩阵或统计分析结果,需将其转换成适合BrainNetViewer读取的形式。这些通常是文本文件或者是特定格式的数据结构,如.mat文件。 - **加载并处理数据**:启动BrainNetViewer之后,在界面内导入之前准备好的数据集。如果是在命令行模式下工作,则可以通过脚本调用相应函数完成这一过程。 - **调整显示属性**:一旦数据被成功载入,就可以开始定制化图形外观了。例如设定颜色映射方案、阈值范围以及节点大小等参数来增强最终呈现效果。 - **保存输出图像**:最后一步就是导出所得到的热图作为图片或其他矢量图形格式供进一步分享交流之用。 由于具体的操作细节会依据版本更新和个人需求有所不同,建议查阅官方文档获取最准确的帮助指南。此外,值得注意的是,虽然这里描述了一般流程,但对于某些特殊情况下的应用可能会有所差异。 ```matlab % 假设已有一个名为conn_matrix.mat的功能连接矩阵文件 load('conn_matrix.mat'); % 加载功能连接矩阵 brainNetViewer; % 启动BrainNetViewer GUI set_network(conn_matrix); % 设置网络权重为我们的功能连接矩阵 colormap(hot(256)); % 应用热力色彩表 view(-90, 0); % 调整视角到侧面视图 saveas(gcf,'heatmap.png') % 将当前窗口内容另存为PNG文件 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值