细数一行代码改变结局的炼丹骚操作

文 | 陀飞轮&圈圈&年年的铲屎官

源 | 知乎


tips总结

知乎答主:陀飞轮

谈一下自己知道的。尽量避开优化器、激活函数、数据增强等改进。。先上完整列表:

Deep Learning: Cyclic LR、Flooding

Image classification: ResNet、GN、Label Smoothing、ShuffleNet

Object Detection: Soft-NMS、Focal Loss、GIOU、OHEM

Instance Segmentation: PointRend

Domain Adaptation: BNM

GAN: Wasserstein GAN

Deep Learning

Standard LR -> Cyclic LR

SNAPSHOT ENSEMBLES: TRAIN 1, GET M FOR FREE

每隔一段时间重启学习率,这样在单位时间内能收敛到多个局部最小值,可以得到很多个模型做集成。

#CYCLE=8000, LR_INIT=0.1, LR_MIN=0.001
scheduler = lambda x:
((LR_INIT-LR_MIN)/2)*(np.cos(PI*(np.mod(x-1,CYCLE)/(CYCLE)))+1)+LR_MIN

Without Flooding -> With Flooding

Do We Need Zero Training Loss After Achieving Zero Training Error?

Flooding方法:当training loss大于一个阈值时,进行正常的梯度下降;当training loss低于阈值时,会反过来进行梯度上升,让training loss保持在一个阈值附近,让模型持续进行“random walk”,并期望模型能被优化到一个平坦的损失区域,这样发现test loss进行了double decent!

flood = (loss - b).abs() + b


Image classification

VGGNet -> ResNet

Deep Residual Learning for Image Recognition

ResNet相比于VGGNet多了一个skip connect,网络优化变的更加容易

H(x) = F(x) + x

BN -> GN

Group Normalization

在小batch size下BN掉点严重,而GN更加鲁棒,性能稳定。

x = x.view(N, G, -1)
mean, var = x.mean(-1, keepdim=True), x.var(-1, keepdim=True)
x = (x - mean) / (var + self.eps).sqrt()
x = x.view(N, C, H, W)

Hard Label -> Label Smoothing

Bag of Tricks for Image Classification with Convolutional Neural Networks

label smoothing将hard label转变成soft label,使网络优化更加平滑。

targets = (1 - label_smooth) * targets + label_smooth / num_classes

MobileNet -> ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

将组卷积的输出feature map的通道顺序打乱,增加不同组feature map的信息交互。

channels_per_group = num_channels // groups
x = x.view(batch_size, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
x = x.view(batch_size, -1, height, width)


Object Detection

NMS -> Soft-NMS

Improving Object Detection With One Line of Code

Soft-NMS将重叠率大于设定阈值的框分类置信度降低,而不是直接置为0,可以增加召回率。

#以线性降低分类置信度为例
if iou > threshold:
    weight = 1 - iou

CE Loss -> Focal Loss

Focal Loss for Dense Object Detection

Focal loss对CE loss增加了一个调制系数来降低容易样本的权重值,使得训练过程更加关注困难样本。

loss = -np.log(p) # 原始交叉熵损失, p是模型预测的真实类别的概率,
loss = (1-p)**GAMMA * loss # GAMMA是调制系数

IOU -> GIOU

Generalized Interp over Union: A Metric and A Loss for Bounding Box Regression

GIOU loss避免了IOU loss中两个bbox不重合时Loss为0的情况,解决了IOU loss对物体大小敏感的问题。

#area_C闭包面积,add_area并集面积
end_area = (area_C - add_area)/area_C    #闭包区域中不属于两个框的区域占闭包区域的比重
giou = iou - end_area

Hard Negative Mining -> OHEM

Training Region-based Object Detectors with Online Hard Example Mining

OHEM通过选择损失较大的候选ROI进行梯度更新解决类别不平衡问题。

#只对难样本产生的loss更新
index = torch.argsort(loss.sum(1))[int(num * ohem_rate):]
loss = loss[index, :]


Instance Segmentation

Mask R-CNN -> PointRend

PointRend: Image Segmentation as Rendering

每次从粗粒度预测出来的mask中选择TopN个最不确定的位置进行细粒度预测,以非常的少的计算代价下获得巨大的性能提升。

points = sampling_points(out, x.shape[-1] // 16, self.k, self.beta)
coarse = point_sample(out, points, align_corners=False)
fine = point_sample(res2, points, align_corners=False)
feature_representation = torch.cat([coarse, fine], dim=1)

Domain Adaptation

EntMin -> BNM

Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Situations

类别预测的判别性与多样性同时指向矩阵的核范数,可以通过最大化矩阵核范数(BNM)来提升预测的性能。

L_BNM = -torch.norm(X,'nuc')


GAN

GAN -> Wasserstein GAN

Wasserstein GAN

WGAN引入了Wasserstein距离,既解决了GAN训练不稳定的问题,也提供了一个可靠的训练进程指标,而且该指标确实与生成样本的质量高度相关。

Wasserstein GAN相比GAN只改了四点:
判别器最后一层去掉sigmoid
生成器和判别器的loss不取对数
每次更新把判别器参数的绝对值按阈值截断
使用RMSProp或者SGD优化器

知乎答主:圈圈

  1. relu:用极简的方式实现非线性激活,还缓解了梯度消失
    x = max(x, 0)

  2. normalization:提高网络训练稳定性
    x = (x - x.mean()) / x.std()

  3. gradient clipping:直击靶心 避免梯度爆炸
    hhhgrad [grad > THRESHOLD] = THRESHOLD # THRESHOLD是设定的最大梯度阈值

  4. dropout:随机丢弃,抑制过拟合,提高模型鲁棒性
    x = torch.nn.functional.dropout(x, p=p, training=training) # 哈哈哈调皮了,因为实际dropout还有很多其他操作,不够仅丢弃这一步确实可以一行搞定
    x = x * np.random.binomial(n=1, p=p, size=x.shape) # 这里p是想保留的概率,上面那是丢弃的概率

  5. skip connection(residual learning):提供恒等映射的能力,保证模型不会因网络变深而退化
    F(x) = F(x) + x

  6. focal loss:用预测概率对不同类别的loss进行加权,缓解类别不平衡问题
    loss = -np.log(p) # 原始交叉熵损失, p是模型预测的真实类别的概率
    loss = (1-p)**GAMMA * loss # GAMMA是调制系数

  7. attention mechanism:用query和原始特征的相似度对原始特征进行加权,关注想要的信息
    attn = torch.softmax(torch.matmul(q, k), dim) #用Transformer里KQV那套范式为例
    v = torch.matmul(attn, v)

  8. subword embedding(char或char ngram):基本解决OOV(out of vocabulary)问题、分词问题。这个对encode应该比较有效,但对decode不太友好
    x = [char for char in sentence] # char-level

知乎答主:年年的铲屎官

  1. 只改1行代码,bleu提高2个点。用pytorch的时候,计算loss,使用最多的是label_smoothed_cross_encropy或者cross_encropy,推荐把设置reduction为'sum',效果可能会比默认的reduction='mean'好一些(我自己的尝试是可以提高2个BLEU左右),以最常用的cross_entropy为例:
    from torch import nn self.criterion = nn.CrossEntropyLoss(ignore_index=pad_id) # reduction默认为'mean'
    改为:
    from torch import nn self.criterion = nn.CrossEntropyLoss( ignore_index=pad_id, reduction='sum')
    发生的变化,实际上就是计算一个sequence的所有token,其loss是否平均(字不好看,请见谅~):

    我的理解(不对请轻喷),这个trick之所以在一些任务中有用,是因为其在多任务学习中平衡了不同的loss的权重,至少在我自己做的image caption任务中看到的结果是这样的。

  2. beam search添加length_penalty
    这一点多亏 @高一帆 的提醒,解码阶段,如果beam search不加任何约束,那么很容易导致生成的最终序列长度偏短,效果可能还不如greedy search。原因的话就是beam size大于1,比较容易在不同的beam中生成较短的序列,且短序列得分往往比长序列高。举个例子的话请看下图(假设beam size为2):

    那么我们需要对较短的序列进行惩罚,我们只需一行代码就可以改善这个问题:
    # 假设原始生成序列的最终累积得分为accumulate_score,length_penalty是超参数,默认为1 accumulate_score /= num_tokens ** length_penalty

  3. 假设encoder输出为encoder_out,是一个tensor(比如一个768的embedding,而非一组embedding),那么我们喂给rnn的输入,input除了上一步的  , 拼接上encoder_out,效果会涨不少。即:

    我自己的实验,每一个timestep给rnn的输入都拼接encoderout,bleu提高3个点(数据量4万)。

  4. 针对多层rnn,比如多层lstm,input feeding也是一个能提高模型表现的trick。就是lstm的第一层,其输入除了前一时刻的输出,还有最高一层前一时刻的隐状态  ,用图来表示就是:
    变为:



表现在代码上,就是:
input = torch.cat((y[t-1], hiddens[t-1]), dim=1) # 原始的只有y[t-1]

后台回复关键词【入群

加入卖萌屋NLP/IR/Rec与求职讨论群

有顶会审稿人、大厂研究员、知乎大V和妹纸

等你来撩哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值