我这两天注意到,百度文心开始疯狂搞事情了,直接贴官网图——
刚刚热乎的官宣,文心 4.5 即将发布,而且是开源。
另外这是昨天的消息——
得益于文心大模型的持续迭代和推理成本的持续降低,文心一言终于全面免费了。
这搞事情的动作太密集了...接连宣布免费、开源背后,可以看到百度更加开放,另一方面,这也是百度的技术底气,近两年来文心大模型能力进化一直在路上,让开发者和广大用户更低门槛地用上大模型的能力。
但我发现在最新迭代中,还有个非常更炸的功能升级,刚刚文心一言还上线了一个叫「深度搜索」的新功能。
看到深度搜索这四个字,我脑子里第一个联想到的就是 Gemini 和 OpenAI 的 Deep Research 功能,这功能我真的太爱了,用来做文献调研、科研协作真的完爆了老一代的对话模型。
但我也深知,这功能太难了,一般性的 RAG+ 大模型调一调根本搞不定。
这也是我很好奇百度能做到什么程度的原因。
这里引用下百度官方的介绍——
“专家级内容回复”,“思考规划,工具调用”,“多场景,多模态输入 + 输出”,这些概念我觉得都无一例外指向了我前面对 Deep Research 的想象。
废话不多说,到底行不行,只有祭出我压箱底的困难 case 才能知道。
先贴一下传送门,发烧老哥可以跟我一块测试:
https://yiyan.baidu.com/
一个让传统 AI 集体崩溃的问题
下面这个问题,是来自 Family 群的一位家人的真实提问。这个问题,几乎让传统 AI 集体崩溃了,无论国内还是国外。不信邪的可以自己去试下。
问题:北京最新的买房贷款政策以及公积金政策是什么,定位具体条款变化,提供对比分析表格
别看这个问题短,AI 要把这个问题回答好,联网搜索、长文档阅读、大海捞针、深度推理、指令遵循、格式化输出的能力一个都不能有短板,否则满盘皆输。
我把这个问题丢给了文心一言「深度搜索」:
1
好家伙,一眼干货,这也太长了。
我拆解了一下,发现这个深度搜索模式,其实本质就是把思考过程与执行做了深度整合。具体来说,先搜索,再配合代码解释器去做确定性推理,最后输出两张能正确满足用户需求的表格。
以前要干这个事儿,你得先手动查询最新的央行文件 → 然后找专业解读 → 再对比历史数据 → 最后分析得到结论,妥妥耗时 2 小时 +。
就算用上传统 AI,由于这个工作流长 + 细节多,也省不下来太多时间。
但现在的路径就是:
提问 → 获取带数据可视化的分析报告。
我觉得,这种新范式,一定会被越来越多的人发现它的独特价值。
像“去哪玩/怎么吃”、“手机卡顿怎么办”这些实用问题已经被 UGC、PGC 解决的很好了,现在是专业问题的解决度不高,普通用户查询门槛高,理解困难。比如让一个想开驴肉火烧的个体户分析店铺选址、税务核查,对他讲还是太难了。
比如,顺着这个思路,我们再来一个更难一点行研 case——
问题:分析 2024 年新能源汽车产业链竞争格局,要求:
自动检索最新行业数据(市场份额/技术专利/政策)
生成包含 SWOT 分析、TOP5 企业对比表的研报和销量柱状图
输出结论性投资建议(含风险等级标注)
2
我特意对着参考文献比较了前面的 N 多个数字,发现 0 幻觉。
甚至,它还给你搞了个柱状图出来。
讲真,这种做数据调研的爽感,用过一次再也回不去了。
虽然专业问题过关了,但是热点时效性同样重要。哪吒 2 最近火爆全球,里面的动画角色都有非常鲜明的特点,连国外的网友都忍不住夸赞,好,看看它对春节档电影细节了解多少。
问题:最近《哪吒之魔童闹海》火爆了,但哪吒、敖丙、东海龙王、太乙真人、无量仙翁、申公豹、申公豹他爹、石矶娘娘这些角色都出圈了,我想知道这部动画里的人物与之前动画片《哪吒传奇》中形象有什么反差不同,用表格形式做一下对比?再综合写出一篇分析文章
3
怎么评呢,至少看完后,我更想去二刷了。
上面的 case 搞定了专业咨询问题,追新闻热点,表格输出等。但我觉得这里的多模态理解和输出的统一能力,也值得拎出来提一嘴。
比如你们看,我上传了一张数据巨多的财务报表,里面数字密密麻麻——
问题:这是 2015 到 2018 年连续 4 年的现金流量表,计算经营性现金流复合增长率,识别异常波动年份并分析原因,生成柱状图 + 趋势线叠加的可视化图表
来,看下结果——
4
不错不错,以后我不懂的财务问题,准备交给他搞了。
整体玩下来,我觉得这次百度悄悄上线深度搜索范式后,今年绝对会有更多厂商跟上。
搜索的目标是获取信息,是一个存量提取过程,用户被搜索引擎响应是被动的,且最大的问题是互联网内容太多,信息过载了。
而大模型生成的目标则是信息升维,是一个增量创造的过程,用户在交互的过程中不断地挖掘本身的需求,直到突破认知边界,它的缺点就是事实幻觉。
过去两年,这两个能力还是挺割裂的。
在 AI 搜索产品里,生成式 AI 主要拿来做“网页内容总结”,只能说提升了搜索效率,但还不能说打破搜索边界。
而从这种深度搜索范式来说,这个则是实实在在去通过生成式 AI 的思考、工具等综合能力,去打破搜索边界,满足人类更复杂的专业性问题需求了。这是一个新的增量。
生成模型能力足够强,再配合足够搜索,一方面可以无限地提高执行力的生理限制,比如一个人 10 分钟完成调研报告和汇报的 PPT;另一方面,越能消除知识的垄断,让专业知识平民化,比如一个没有任何经验的个体户也能了解跨境电商税务合规指南,不需要再四处求找专家。
还是回到开头那句话——
深度搜索,是百度在当下技术框架下,对用户需求的一次积极回应和探索。
核心价值不在于答案有多专业,而在于把专业信息翻译成大众语言。要知道,中文互联网专业内容匮乏是现状,普通大众检索理解专业知识的门槛高是现状。
大一的新生要的是快速搭建专业分析框架,而非要终极答案;个体创业者想要了解政策扶持和市场现状,帮他们做信息筛选才有价值。
中文互联网的专业信息平权之路,需要有人进行。
作为一个风起云涌 20 多年的老搜索巨头,百度还在坚持打破搜索的需求满足边界,提升搜索的问题解决上限,我觉得这是一个看似意料之内,实则又不易的一件事儿。
在喷涌的讨论声中,我们或许该为这种朴实的坚持保留一些观察的耐心。