本篇文章是对公众号《机器学习与推荐算法》历史文章的汇总以及对干货内容的梳理,力争把最全面的干货与最完整的知识体系以最清晰的方式呈现给大家,希望大家能够精准快速地获取到自己想学习的内容,尽到一个干货推荐系统应尽的职责。
1 历史文章精选
这里罗列一些往期的精选文章,主要包括推荐资源分享、总结性质的文章、精选推荐论文解读以及顶会论文聚焦等。
✔推荐资源分享
整理推荐系统与机器学习相关资源供大家学习交流,包括但不限于数据集、比赛、论文等。比如:
✔总结性质文章
不定期分享一些关于推荐系统、机器学习方面总结性质的文章,旨在给大家一个较为全面的知识框架。比如:
✔精选论文推荐
理想情况下,会定期分享经典的或者前沿的推荐系统相关的文章,供大家在碎片化的时间阅读,主要是以论文笔记的形式呈现。经典在于复习巩固,前沿在于拓展视野。比如:
✔顶会论文聚焦
定期整理顶会关于推荐系统、机器学习相关的文章、并用心总结最新的发展趋势,供大家学习交流。比如:
以上,关注【机器学习与推荐算法】公众号即可上车,奉上二维码,谨防迷路。
(ML、DM、RS爱好者,欢迎关注!)
资源大放送
来而不往非礼也,来而空手回非礼也。下面你将看到的是小磊呕心沥血整理的推荐系统相关资源,可能真的是史上最全的推荐系统学习资料了,内容涵盖精选论文集、学习笔记、算法实现集合、经典书籍集合以及常用数据集大礼包。
综述合集(RSSurveys)
后台回复关键字【综述】,即可获得推荐系统领域涉及全场景的20多篇综述文章,比如协同过滤综述、社会化推荐综述、可解释性综述等,帮你快速轻松入门,快速搭建知识大厦,快速走向人生巅峰。
教程合集(RSTutorials)
后台回复关键字【教程】,即可获得推荐系统领域近10年共27份著名学者关于推荐系统的官方Tutorials合集,内容涉及推荐系统基础教程、社会化推荐教程、跨域推荐教程、实时推荐教程以及深度学习推荐教程等。这可是推荐系统领域著名学者给你上课,可得好好学习。
精选论文(RSPapers)
后台回复关键字【论文】,即可获得推荐系统领域12大类超200篇经典文献,场景涉及主流的推荐算法、社会化推荐算法、基于深度学习的推荐系统(包括目前较火的GCN网络)以及关于专门处理冷启动问题的相关论文、推荐中的哈希、POI推荐、可解释性推荐以及推荐当中的探索与利用问题和基于知识图的推荐、基于CTR的推荐等。助你在推荐细分领域快速了解前人工作,好站在巨人的肩膀上班门弄斧。
学习笔记(MLNotes)
后台回复关键字【笔记】,即可获取Coursera上吴恩达老师关于机器学习课程笔记,笔记干货满满,长达93页,中文阅读,适合入门。
算法实现(RSAlgorithms)
后台回复关键字【算法】,即可获得近年来经典推荐系统算法的python实现,助你快速上手,早日成为算法大神。
经典书籍(RSBooks)
后台回复关键字【书籍】,即可获得近年来RS, DL, DM, Pytorch领域值得一读、广受好评的书籍材料,使你徜徉书海无法自拔。
数据集(RSDatasets)
后台回复关键字【数据】,即可获得用于推荐系统算法所使用的常见数据集,毕竟数据是新的石油,有了数据,就有了希望与爱。
志合者,不以山海为远,故跋涉而有游集。机器学习与推荐算法,期待与你相遇!
(别愣着了,赶快搜索关注【机器学习与推荐算法】公号吧!)