ICLR 2023论文接收列表公布,top5%都涉及ICL、扩散模型等方向,引热议

4b51d094e1397e8f01ab3608ecbd5113.jpeg

编|陈萍

源|机器之心报道

今年整体接收率为 31.8%,你的论文出现在列表中了吗?

深度学习顶级学术会议 ICLR 2023 录用结果已经公布!论文接收的完整列表已经在 OpenReview 平台上公开
39ee6435a3d145263e1c76579b0b57a5.png

ICLR 2022 完整论文列表: 

https://openreview.net/group?id=ICLR.cc/2023/Conference#notable-top-5-

ICLR 全称为国际学习表征会议(International Conference on Learning Representations),今年将举办的是第十一届,预计将于 5 月 1 日至 5 日在卢旺达首都基加利线下举办。

在机器学习社区中,ICLR 是较为「年轻」的学术会议,它由深度学习巨头、图灵奖获得者 Yoshua Bengio 和 Yann LeCun 牵头举办,2013 年才刚刚举办第一届。不过 ICLR 很快就获得了学术研究者们的广泛认可,被认为是深度学习的顶级会议。在 Google Scholar 的学术会议 / 杂志排名中,ICLR 目前排名第十位,要高于 NeurIPS。

83072814dc6709e5f00a3d10d2afc395.png

在今年的接收统计中, ICLR 共接收近 5000 篇投稿,整体接收率为 31.8%,接近于去年的 32.26%。今年还有一个变化是接收论文的 tag 会有两个,一个是论文类型(oral、spotlight、poster),另一个是 presentation 的方式

1c2c4f39ed2618c89c0fe932835e2902.png

位于 top5% 论文内容涉及 Transformer、in-context learning、扩散模型等内容。

214ecd2bfadb6b41fb2ae249e2f35eb3.png

top5% 论文列表截图_论文接收列表一放出,在推特上引起了热烈讨论。

斯坦福大学计算机科学博士 Dan Fu 表示自己参与的论文中了 spotlight,他还谈到,大家都在议论 Attention is all you need,但没有人给出到底需要多少层 Attention?在这篇论文中,他们提出了一个新的生成语言模型 H3,其性能优于 GPT-Neo-2.7B,只需要 2 个 Attention 层。

812c298df14349542ce8f9dff248db5b.png

KAIST AI(韩国电信公司与韩国科学技术院合作成立的 AI 研发机构)表示,他们总共有 24 篇论文被 ICLR 2023 录取,包括 9 篇 Spotlights。

834ecfe51725ec46c73450fade1b8872.png

除此以外,Salesforce AI Research 也有多篇论文被接收。

d5b24bbfc1e828684e969df8eebdcf71.png

在本次接收名单中,马毅教授、Yann LeCun 等人合作撰写的文章《Minimalistic Unsupervised Learning with the Sparse Manifold Transform》也被接收,除此以外,马毅教授参与的另一篇关于增量学习论文也在接收列表中。

018054d9776b3e7c035a9ef96b4cd8bd.png40d066f0a03b127935f258a99008444d.png

最近一段时间,生成模型发展迅速,随之而来的风险也在增加,谷歌一篇关于大型语言模型如何更好的向用户显示输出的研究也被接收:
6873991e7889352c13043d6cadf03771.png

很多网友都在推特上分享了论文被接收的喜悦,没有中的小伙伴也不要灰心,争取在接下来的顶会上有所斩获。

8ea0945d2b0f823cc3262ba8aa64cc4d.jpeg后台回复关键词【入群

加入卖萌屋NLP、CV、搜推广与求职讨论群

 b32076bdec78da8c833331ee078d3bc9.png

[1] https://twitter.com/search?q=ICLR%202023&src=typed_query&f=top_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值