一文讲透语义分割在医学图像处理中的应用!

随着深度学习的不断发展,计算机视觉技术在众多行业场景下均有了大规模应用。

其中,语义分割作为计算机视觉中最基本的研究课题之一,其本质是为每个像素分配一个语义类别从而完成对图像最精细化的理解。

近年来,医疗辅助诊断的发展态势日渐火爆,其中使用到的语义分割技术也为上述系统做出了重要贡献,其主要功能在于帮助系统完成对敏感病灶的理解和预判。

同时,众多优秀开源的数据集已为语义分割技术打好基础,上层算法及最终应用效果还有一定发展空间。

因此,医学图像处理任务是语义分割技术目前较为主流的应用方向

4月18晚20:00,我们特地准备了由深耕“医学图像分割”多年的Cola老师为我们带来《一节课通关医学图像分割》,内容非常干货!

6dd9796b0522325a9d16f3cf612ebff2.png

扫描下方二维码,支付0.01元获取课程

d3f5257ddef7e08b8084919218b1f4d5.png

购买后务必添加客服微信领取论文合集

 直播内容

一、医学图像分割

- AI在医学辅助中的应用

- 医学图像与自然图像的区别

二、数据集

三、实验简介

- 数据情况

- 综合分析

部分PPT展示(完整课件会在直播后免费分享)

55bec43426e7f21bafccabc895817268.png

27c9072a939b33a34dfbb3daeef414d1.png

2650b4a5c24b91b09170cc8ac2d8413b.png

d83aec27e79e486ef1a006bccef87de7.png

1c838173861178a438cafd68da188b08.png

 直播福利

精选医学图像分割论文合集

033c6003d5951734621ba6e049a59866.gif

066a1518da66e7cc5657a92a13258416.gif

扫描下方二维码,支付0.01元获取课程

52f3a0fb386455fe3238b7fdd47d0071.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值