题目:
题目描述
给定一个长为 N 的序列 Ai,你可以进行若干次操作:
选定一个区间 [L,R],让这个区间里的数加 1。
设经过这若干次操作后的序列为 Bi,那么你需要让 Bi 满足下面这个要求:
存在一个整数k∈[1,N],满足对于子序列 A1={A1,A2,⋯,Ak} 为严格递增序列,对于子序列 A2={Ak,Ak+1,⋯,AN} 为严格递减序列。
你想知道最少需要多少次操作才能满足上面这个要求。
输入格式
第一行一个整数 N 代表序列长度。
第二行 N 个整数Ai 代表序列。
输出格式
一行一个整数代表最小操作次数。
输入数据 1
5
3 2 2 3 1
Copy
输出数据 1
3
Copy
输入数据 2
5
9 7 5 3 1
Copy
输出数据 2
0
Copy
输入数据 3
2
2021 2021
Copy
输出数据 3
1
Copy
输入数据 4
8
12 2 34 85 4 91 29 85
Copy
输出数据 4
93
Copy
提示
样例 1 解释
对 [2,5][2,5] 进行操作,序列变为 {3,3,3,4,2}{3,3,3,4,2}。
对 [2,3][2,3] 进行操作,序列变为 {3,4,4,4,2}{3,4,4,4,2}。
对 [3,3][3,3] 进行操作,序列变为 {3,4,5,4,2}{3,4,5,4,2}。
样例 2 解释
序列已经满足要求,不需要操作。
样例 3 解释
对区间 [1,1][1,1] 或 [2,2][2,2] 进行操作都可。
说明
思路:
主要使用差分与双指针
用l和r分别存储第一个<=0和>=0的位置,l从1开始,r从n开始,如果它们之间有空隙,就填充,填充min(abs(b[l])+1,b[r]+1),到这里可能有的读者就要问了,为什么每一次都是前缀与后缀中选一个最大的起来,而不是加起来?因为是在连续区间加1,且只有这一种操作。比如让前面严格上升要加5次,让后面严格下降要操作10次。可以先把上升和下降这个区间同时操作5次,然后再去操作下降的5次。加1是因为b[l]只是b[l/r]与上一个的差,想要超越至少加1。直到l>=r结束,中间用num存储次数
注意:b[l]+=t与b[r]-=t是差分中l到r-1都加一的意思,不懂的读者可以去查。
代码:
#include<iostream>
using namespace std;
long long n,num,a[200001],b[200001],l,r,t;
int main(){
cin>>n;
for(long long i=1;i<=n;++i){
cin>>a[i];
b[i]=a[i]-a[i-1];
}
l=1,r=n,t;
while(l<r){
while(b[l]>0){
l++;
}
while(b[r]<0){
r--;
}
if(l>r){
break;
}
t=min(abs(b[l])+1,b[r]+1);
num+=t;
b[l]+=t;
b[r]-=t;
}
cout<<num;
return 0;
}
最后,笔者在这里再提供一种思路:
把1——n变成升序所用的最少步数装在x数组里;把n——1变成升序所用的最少步数装在y数组里;最后再枚举看k,min(max(x[k],y[k+1]))为最优解,这里的min是对于1-n的k的max(x[k],y[k+1]);且x[k]为1-k的变成升序所用的最少步数,y[k+1]为把n-k+1变成升序所用的最少步数。
代码呢。就是这个
#include<iostream>
using namespace std;
long long a[200001],b[200001],x[200001],y[200001];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
b[i]=a[i]-a[i-1];
}
for(int i=2;i<=n;i++){
x[i]=b[i]<=0?x[i-1]-b[i]+1:x[i-1];//这个地方呢,看着是一个一个加,实则你可以换个思路想一想,他这个是把后面的一起加了,但他们的差不变,因为只有后面的一起加上,才是最优的,只要把这个差加上再加1,保证后面的大于前面的,便是最优解。这个后面指的是a[i]啊。不要以为是a[i+1].
}
for(int i=n;i>=2;i--){
y[i]=b[i]>=0?y[i+1]+b[i]+1:y[i+1];
}
long long num=1000000001;
for(int i=1;i<=n;i++){
num=min(num,max(x[i],y[i+1]));
}
cout<<num;
return 0;
}