洛谷——P7404家庭菜园4解析

题目:

题目描述

给定一个长为 N 的序列 Ai,你可以进行若干次操作:

选定一个区间 [L,R],让这个区间里的数加 1。

设经过这若干次操作后的序列为 Bi,那么你需要让 Bi 满足下面这个要求:

存在一个整数k[1,N],满足对于子序列 A1​={A1​,A2​,,Ak为严格递增序列,对于子序列 A2​={Ak,Ak+1​,,AN为严格递减序列。

你想知道最少需要多少次操作才能满足上面这个要求。

输入格式

第一行一个整数 N 代表序列长度。

第二行 N 个整数Ai 代表序列。

输出格式

一行一个整数代表最小操作次数。

输入数据 1

5

3 2 2 3 1

Copy

输出数据 1

3

Copy

输入数据 2

5

9 7 5 3 1

Copy

输出数据 2

0

Copy

输入数据 3

2

2021 2021

Copy

输出数据 3

1

Copy

输入数据 4

8

12 2 34 85 4 91 29 85

Copy

输出数据 4

93

Copy

提示

样例 1 解释

对 [2,5][2,5] 进行操作,序列变为 {3,3,3,4,2}{3,3,3,4,2}

对 [2,3][2,3] 进行操作,序列变为 {3,4,4,4,2}{3,4,4,4,2}

对 [3,3][3,3] 进行操作,序列变为 {3,4,5,4,2}{3,4,5,4,2}

样例 2 解释

序列已经满足要求,不需要操作。

样例 3 解释

对区间 [1,1][1,1] 或 [2,2][2,2] 进行操作都可。

说明

翻译自 The 20th Japanese Olympiad in Informatics Final Round A とてもたのしい家庭菜園 4 的英文翻译 Growing Vegetables is Fun 4

思路:

主要使用差分与双指针

用l和r分别存储第一个<=0和>=0的位置,l从1开始,r从n开始,如果它们之间有空隙,就填充,填充min(abs(b[l])+1,b[r]+1),到这里可能有的读者就要问了,为什么每一次都是前缀与后缀中选一个最大的起来,而不是加起来?因为是在连续区间加1,且只有这一种操作。比如让前面严格上升要加5次,让后面严格下降要操作10次。可以先把上升和下降这个区间同时操作5次,然后再去操作下降的5次。加1是因为b[l]只是b[l/r]与上一个的差,想要超越至少加1。直到l>=r结束,中间用num存储次数

注意:b[l]+=t与b[r]-=t是差分中l到r-1都加一的意思,不懂的读者可以去查。

代码:

#include<iostream>
using namespace std;
long long n,num,a[200001],b[200001],l,r,t;
int main(){
    cin>>n;
    for(long long i=1;i<=n;++i){
        cin>>a[i];
        b[i]=a[i]-a[i-1];
    }
    l=1,r=n,t;
    while(l<r){
        while(b[l]>0){
            l++;
        }
        while(b[r]<0){
            r--;
        }
        if(l>r){
            break;
        }
        t=min(abs(b[l])+1,b[r]+1);
        num+=t;
        b[l]+=t;
        b[r]-=t;
    }
    cout<<num;
    return 0;
}

最后,笔者在这里再提供一种思路:

把1——n变成升序所用的最少步数装在x数组里;把n——1变成升序所用的最少步数装在y数组里;最后再枚举看k,min(max(x[k],y[k+1]))为最优解,这里的min是对于1-n的k的max(x[k],y[k+1]);且x[k]为1-k的变成升序所用的最少步数,y[k+1]为把n-k+1变成升序所用的最少步数。

代码呢。就是这个

#include<iostream>
using namespace std;
long long a[200001],b[200001],x[200001],y[200001];
int main(){
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        b[i]=a[i]-a[i-1];
    }
    for(int i=2;i<=n;i++){
        x[i]=b[i]<=0?x[i-1]-b[i]+1:x[i-1];//这个地方呢,看着是一个一个加,实则你可以换个思路想一想,他这个是把后面的一起加了,但他们的差不变,因为只有后面的一起加上,才是最优的,只要把这个差加上再加1,保证后面的大于前面的,便是最优解。
这个后面指的是a[i]啊。不要以为是a[i+1].
    }
    for(int i=n;i>=2;i--){
        y[i]=b[i]>=0?y[i+1]+b[i]+1:y[i+1];
    }
    long long num=1000000001;
    for(int i=1;i<=n;i++){
        num=min(num,max(x[i],y[i+1]));
    }
    cout<<num;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值