java对接Dify的工作流API(实战篇)

前面的博客有讲到Dify工作流调接口查询数据以及调用Dify的聊天助手API,此博客需具备以上基础。

背景:本人就职于某IT企业,当前公司正推进企业级AI应用的建设。基于微服务架构的业务复杂度较高,在技术选型中我们采用Dify工作流来实现核心需求。该方案的实现流程与此博客大体一致,可满足企业级应用的技术要求。

步骤一:启动Dify

图片

目前版本:1.2.0

步骤二:搭建工作流

图片

搭建步骤已省略,核心内容在下方。Dify的工作流具备很多组件,大家可以根据需求灵活使用,此次演示为Demo,真实场景比这个要复杂哈。

步骤三:接口测试

由于在工作流中使用http请求保存数据,需要使用postman验证该接口是否可用。

图片

还需要去数据库查看一下

图片

数据保存成功,进入下一环节

步骤四:发布工作流

在发布前,需要运行或调试工作流是否正常。遇到问题不要慌,解决问题就是,大家可以加入技术群或个人微信交流~

图片

步骤五:对接工作流

有些人就会问,Dify不是都实现了吗,为啥还要编写java代码去对接了,前端不是能对接python接口吗?

回答:基于业务需求,没错,就这么简单!

自己也不确定,特意借助DeepSeek查了下,支持国产!

图片

真是良心,回答的非常详细。

WorkFlowController

@RestController@RequestMapping("/workflow")public class WorkFlowController {    @Autowired    private WorkFlowService workFlowService;
    /**     * 上传文件     *     * @param file     * @return     * @throws IOException     */    @PostMapping("/upload")    public WorkFlowFileVo upload(@RequestParam("file") MultipartFile file) throws IOException {        return workFlowService.upload(file);    }
    /**     * 执行工作流     *     * @param workFlowRunDto     * @return     */    @PostMapping("/runWorkFlow")    public SseEmitter runWorkFlow(@RequestBody WorkFlowRunDto workFlowRunDto) {        return workFlowService.runWorkFlow(workFlowRunDto);    }
    /**     * 获取工作流执行情况     *     * @param workflowRunId     * @return     */    @GetMapping("/workFlowInfo")    public WorkFlowExeVo workFlowRunInfo(String workflowRunId) {        return workFlowService.workFlowRunInfo(workflowRunId);    }
}

WorkFlowService

public interface WorkFlowService {    /**     * 上传文件     *     * @param file     * @return     */    public WorkFlowFileVo upload(@RequestParam("file") MultipartFile file) throws IOException;
    /**     * 执行工作流     *     * @param workFlowRunDto     * @return     */    public SseEmitter runWorkFlow(@RequestBody WorkFlowRunDto workFlowRunDto);
    /**     * 获取工作流执行情况     *     * @param workflowRunId     * @return     */    public WorkFlowExeVo workFlowRunInfo(String workflowRunId);
}

WorkFlowServiceImpl

     /**     * 上传文件     *     * @param file     * @return     * @throws IOException     */    @Override    public WorkFlowFileVo upload(MultipartFile file) throws IOException {        // 设置请求头        HttpHeaders headers = new HttpHeaders();        headers.setContentType(MediaType.MULTIPART_FORM_DATA);        headers.set("Authorization", difyConfig.getSaveDataAuthorization());        // 创建请求实体        MultiValueMap<String, Object> body = new LinkedMultiValueMap<>();        // 处理文件内容        body.add("file", new ByteArrayResource(file.getBytes()) {            @Override            public String getFilename() {                // 返回原始文件名                return file.getOriginalFilename();            }        });
        HttpEntity<MultiValueMap<String, Object>> requestEntity = new HttpEntity<>(body, headers);        String uploadUrl = difyConfig.getSaveDataUrl() + "/files/upload";
        // 发送请求        ResponseEntity<String> response = restTemplate.exchange(uploadUrl, HttpMethod.POST, requestEntity, String.class);        log.info("上传文件的response: {}", response);
        WorkFlowFileVo workFlowFileVo = JSON.parseObject(response.getBody(), WorkFlowFileVo.class);        // 构建工作流请求体        WorkFlowRunDto workFlowRunDto = buildWorkFlowRunDto(workFlowFileVo.getId());        // 执行工作流        this.runWorkFlow(workFlowRunDto);    }
     /**     * 执行工作流     *     * @param workFlowRunDto     * @return     */    @Override    public SseEmitter runWorkFlow(WorkFlowRunDto workFlowRunDto) {        // 设置超时时间 300s        SseEmitter emitter = new SseEmitter(300_000L);
        // 使用异步线程处理流式响应        ExecutorService executor = Executors.newSingleThreadExecutor();        executor.execute(() -> {            try {                String runUrl = difyConfig.getSaveDataUrl() + "/workflows/run";                log.info("runUrl: {}", runUrl);
                // 创建请求头                HttpHeaders headers = new HttpHeaders();                headers.set("Authorization", difyConfig.getSaveDataAuthorization());                headers.setContentType(MediaType.APPLICATION_JSON);                // 设置接收流                headers.set(HttpHeaders.ACCEPT, MediaType.TEXT_EVENT_STREAM_VALUE);                HttpEntity<WorkFlowRunDto> requestEntity = new HttpEntity<>(workFlowRunDto, headers);
                // 使用restTemplate的execute方法处理流式响应                restTemplate.execute(                        runUrl,                        HttpMethod.POST,                        request -> {                            // 关键修复:手动设置Content-Type和请求头                            request.getHeaders().setContentType(MediaType.APPLICATION_JSON);                            request.getHeaders().addAll(requestEntity.getHeaders());
                            // 写入请求体                            if (requestEntity.getBody() != null) {                                new ObjectMapper().writeValue(request.getBody(), requestEntity.getBody());                            }                        },                        response -> {                            try (BufferedReader reader = new BufferedReader(new InputStreamReader(response.getBody()))) {                                // 标记是否已处理workflow_run_id                                boolean workflowRunIdProcessed = false;                                String line;                                while ((line = reader.readLine()) != null) {                                    if (line.startsWith("event: ping")) {                                        // 跳过心跳事件                                        continue;                                    }                                    emitter.send(line);                                    log.info("line: {}", line);                                    if (!workflowRunIdProcessed) {                                        try {                                            workflowRunIdProcessed = processLine(line);                                        } catch (Exception e) {                                            log.error("记录id出现异常: {}", e.getMessage());                                            emitter.completeWithError(e);                                        }                                    }                                }                            }                            emitter.complete();                            return null;                        }                );
            } catch (Exception e) {                log.error("处理过程中发生错误: {}", e.getMessage());                emitter.completeWithError(e);            } finally {                log.info("流式输出结束...");            }        });        // 关闭线程池        executor.shutdown();        log.info("流式输出完成...");        return emitter;    }
    @Override    public WorkFlowExeVo workFlowRunInfo(String workflowRunId) {        log.info("获取到的工作流id: {}", workflowRunId);
        // 设置请求头        HttpHeaders headers = new HttpHeaders();        headers.set("Authorization", difyConfig.getWorkFlowAuthorization());
        String workFlowInfoUrl = difyConfig.getWorkFlowUrl() + "/workflows/run/" + workflowRunId;
        HttpEntity<String> requestEntity = new HttpEntity<>(headers);
        // 发送请求        ResponseEntity<String> response = restTemplate.exchange(workFlowInfoUrl, HttpMethod.GET, requestEntity, String.class);        log.info("response: {}", response);
        return JSON.parseObject(response.getBody(), WorkFlowExeVo.class);    }

步骤六:测试

有小伙伴就纳闷了,公司不是有测试吗,怎么还要自己测啊?

回答:招你进来不是闲着玩的

个人:都是牛马

图片

测试文件上传,由于Demo版代码执行文件与工作流执行在一块,如果基于业务需求,中间会进行其他操作。

图片

控制台信息:

图片

建议大家在开发过程中规范记录日志,以便在系统出现异常时能快速定位问题根源。日志的详细程度可根据实际需求和开发经验灵活调整。

图片

基于上述流程方案,我们已顺利完成了企业级应用需求的开发。

本人正在打造技术交流群,欢迎志同道合的朋友一起探讨,一起努力,通过自己的努力,在技术岗位这条道路上走得更远。QQ群号:914683950 备注:技术交流 即可通过!

上一篇:接入SpringAI实现流式对话

<think>好的,我现在需要处理用户关于JavaDify数据流的实现与用法的问题。首先,我需要确认用户提到的“Dify数据流”具体指的是什么。根据用户提供的引用内容,引用[1]提到Dify.AI使用机器学习算法构建工作流程模型,而引用[2]则是一个关于Java中抽象类和线程池的例子。可能用户是想了解如何结合Dify.AI的智能工作流程与Java中的数据流处理。 接下来,我需要考虑如何将这两个引用联系起来。引用[2]中的代码示例展示了一个抽象类和线程池的使用,这可能涉及到数据流的处理。用户可能希望了解如何在Java中实现类似Dify.AI的数据流处理,比如通过多线程或异步处理来优化数据流。 然后,我需要确定用户的具体需求。用户的问题是关于JavaDify数据流的实现和用法,可能需要指导如何设计数据流处理框架,如何利用线程池进行任务处理,以及如何解耦不同组件。引用[2]中的例子已经展示了解耦的方法,通过抽象类和继承来实现,这可能是一个关键点。 我还需要检查是否有相关的库或框架在Java中用于数据流处理,比如Apache Kafka、Spring Reactor或者Akka Streams,但用户提到的Dify可能是一个特定的系统,所以可能需要结合其机器学习的工作流程模型。不过根据引用内容,Dify.AI主要涉及流程节点、规则和数据关系的建模,因此在Java中实现类似功能可能需要自定义数据流处理逻辑。 接下来,我应该考虑分步骤解释如何实现这样的数据流。首先,定义数据处理的接口或抽象类,如引用[2]中的抽象类,然后实现具体的处理逻辑,利用线程池来异步执行任务。同时,可能需要使用队列或缓冲区来管理数据流,确保各个处理节点之间的数据传递。 还需要考虑错误处理、资源管理和性能优化等方面。例如,如何确保线程安全,如何处理异常,以及如何监控数据流的执行情况。这些都是实现健壮数据流系统的重要部分。 最后,我需要验证我的思路是否符合用户的需求,并确保回答结构清晰,步骤明确,引用相关的示例来支持解释。同时,生成相关问题帮助用户进一步探索该主题。</think>关于Java中实现类似Dify.AI智能化数据流的方法,可通过以下四个步骤实现: ### 一、定义数据流处理接口 采用抽象类定义通用处理逻辑,如引用[2]中的示例: ```java public abstract class DataStreamProcessor { // 抽象执行单元 public abstract void execute(DataPackage data); // 公共线程池处理 protected void consumerThread(DataPackage data) { ExecutorService executor = Executors.newCachedThreadPool(); executor.submit(() -> { this.preProcess(data); this.execute(data); this.postProcess(data); }); } private void preProcess(DataPackage data) { // 数据校验逻辑 } private void postProcess(DataPackage data) { // 结果持久化 } } ``` ### 二、实现具体处理节点 继承抽象类实现具体业务逻辑: ```java public class MLModelProcessor extends DataStreamProcessor { @Override public void execute(DataPackage data) { // 调用Dify.AI的机器学习模型处理 ModelResult result = DifyModel.predict(data); data.addMetadata("prediction", result); } } public class DataValidator extends DataStreamProcessor { @Override public void execute(DataPackage data) { if(data.rawValue == null) { throw new InvalidDataException(); } } } ``` ### 三、构建工作流引擎 通过责任链模式组合处理节点: ```java public class WorkflowEngine { private List<DataStreamProcessor> processors = new ArrayList<>(); public void addProcessor(DataStreamProcessor processor) { processors.add(processor); } public void process(DataPackage data) { for(DataStreamProcessor p : processors) { p.consumerThread(data); } } } ``` ### 四、应用示例 ```java public static void main(String[] args) { WorkflowEngine engine = new WorkflowEngine(); engine.addProcessor(new DataValidator()); engine.addProcessor(new MLModelProcessor()); // 从消息队列持续获取数据 while(true) { DataPackage data = KafkaConsumer.poll(); engine.process(data); } } ``` 该实现方案具备以下特点: 1. 通过抽象类实现处理逻辑解耦[^2] 2. 支持动态扩展处理节点 3. 每个处理节点使用独立线程池资源 4. 内置数据校验和结果处理通用逻辑
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值