设夹角为a 四边形被对角线分为4个三角形,对角线四段分别设为m,n,p,q 则4个三角形面积分别为: S1=1/2*m*p*sina S2=1/2*m*q*sin(180-a)=1/2*m*q*sina S3=1/2*n*p*sina S4=1/2*n*q*sin(180-a)=1/2*n*q*sina 故四边形面积为: S=S1+S2+S3+S4=1/2*(m*p+m*q+n*p+n*q)*sina =1/2*(m+n)*(p+q)*sina 其中:(m+n)、(p+q)分别为两对角线长 证毕。 补充:海伦公式假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=%√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
任意四边形的面积公式
最新推荐文章于 2024-06-09 15:40:01 发布