定理:对于任意的四边形ABCD,其对角线AC与BD的中点分别是M,N,AB,CD的延长线交于R.验证三角形RMN的面积是四边形ABCD面积的四分之一。
下面我们就用C语言来验证一下这个定理的正确性,由于计算机的精确度是有限的,我们采用双精度double来存储各个边长的长度及运算过程中的变量,由于double值会对实际长度进行截取,特别是长度为根号值时,导致与实际长度有出入,所以有时候最后得到的面积只能是近似,也就是答案接近于4就应是正确的答案,原命题也就得到了证明。
我贴出正确的C语言源代码,供大家编译运行。花了我四天时间,脑子真是笨呀!
#include<stdio.h>
#include<math.h>
typedef struct
{
double x;
double y;
} Point;
#define a P[0]
#define b P[1]
#define c P[2]
#define d P[3]
int ok(Point *p ) /*指针可以当数组来使用*/
{ /*检测是否1),2)+pow((a2-a1),2);
平行四边形,若是返回0*/
double a0,b0,a1,b1, a2,b2, a3,b3, k1,k2,k3,k4;
a0=p[0].x;b0=p[0].y;a1=p[1].x;b1=p[1].y;
a2=p[2].x;b2=p[2].y;a3=p[3].x;b3=p[3].y;
k1=pow((b1-b0),2)+pow((a1-a0),2);
k2=pow((b3-b2),2)+pow((a3-a2),2);
k3=pow((b2-b1),2)+pow((a2-a1),2);
k4=pow((b3-b0),2)+pow((a3-a0),2);
if((k1==k2)&&(k3==k4))
{ getch();
return 0;
}
return 1;
}
/*声明各个子函数*/
double si_area(double s[]);
Point joind(Point P[]);
main()
{
Point m,n,r,dian1,P[4],*PP=P;
char *p;
double x,y,tt,sos, var[5];
double m1,m2,m3,tmp ;
static char pname[]="ABCD";
p=pname;
whi