C语言求任意四边形面积和其关联的三角形面积的关系

这篇博客介绍了如何使用C语言验证一个几何定理:对于任意四边形,其对角线中点连接形成的三角形面积是原四边形面积的四分之一。博主分享了完整的C语言代码,并提醒由于计算机浮点数精度限制,可能得到的是近似结果。代码中包含了检测四边形有效性、计算面积等函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    定理:对于任意的四边形ABCD,其对角线AC与BD的中点分别是M,N,AB,CD的延长线交于R.验证三角形RMN的面积是四边形ABCD面积的四分之一。

    下面我们就用C语言来验证一下这个定理的正确性,由于计算机的精确度是有限的,我们采用双精度double来存储各个边长的长度及运算过程中的变量,由于double值会对实际长度进行截取,特别是长度为根号值时,导致与实际长度有出入,所以有时候最后得到的面积只能是近似,也就是答案接近于4就应是正确的答案,原命题也就得到了证明。

    我贴出正确的C语言源代码,供大家编译运行。花了我四天时间,脑子真是笨呀!

 #include<stdio.h>
#include<math.h>

typedef struct
{
double x;
double y;
} Point;
 
#define a P[0]
#define b P[1]
#define c P[2]
#define d P[3]



int ok(Point *p )  /*指针可以当数组来使用*/
{ /*检测是否1),2)+pow((a2-a1),2);
 平行四边形,若是返回0*/
  double  a0,b0,a1,b1, a2,b2, a3,b3, k1,k2,k3,k4;
  a0=p[0].x;b0=p[0].y;a1=p[1].x;b1=p[1].y;
  a2=p[2].x;b2=p[2].y;a3=p[3].x;b3=p[3].y;
  k1=pow((b1-b0),2)+pow((a1-a0),2);
  k2=pow((b3-b2),2)+pow((a3-a2),2);
  k3=pow((b2-b1),2)+pow((a2-a1),2);
  k4=pow((b3-b0),2)+pow((a3-a0),2);
  if((k1==k2)&&(k3==k4))
   {  getch();
      return 0;
   }
  return 1;
}
/*声明各个子函数*/
double si_area(double s[]);
Point joind(Point P[]);
main()
{
  Point m,n,r,dian1,P[4],*PP=P;
  char *p;
  double x,y,tt,sos, var[5];
  double  m1,m2,m3,tmp  ;
  static  char pname[]="ABCD";
  p=pname;
  whi

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值