二维凸包convex hull之C++及OpenCV实现

本文介绍了二维凸包的重要性及其在手势识别等领域的应用。重点讲解了Graham扫描算法,该算法以nlog(n)的复杂度找到凸包,并通过极角排序实现。文中提供C++代码实现,结合OpenCV进行可视化,帮助理解算法过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

打算接下来好好研究下算法(很明显,算法才是王道啊),然后尽量用直观的方式输出,于是用OpenCV画图成了不二首选,各位看官接下来看到一堆“XXX之C++及OpenCV实现”之类的标题就别见怪了~


另外还有个打算,看到自己写的东西被别人拿去占为己有,不爽,开始贴版权了^_^。

本文出处:http://blog.csdn.net/xizhibei

============================================================

今天就是二维凸包,算法导论中文版584页说的就是凸包,现在,让我们来实现它。


话说,凸包在很多地方有着重要的作用,如手势识别,需要识别出手的轮廓的凸包,二维或者三维区域的边界等等。

而对于凸包算法,其中最有名的莫过于Graham扫描算法,它的复杂度为nlog(n),过程很优美,相信你看过运行过程你就会同样觉得了。

简单来说,这个算法的过程就是这样:

1.计算求得输入点x坐标最小(如果x相等,则比较y是不是最小)的点,作为第一个点

2.其它的点按照极角按顺时针排列,如果有共线的,取最近的那一个

OpenCV 中,`convexHull()` 函数是一个非常有用的工具,用于找到图像轮廓的凸包,即所有轮廓点中连接起来形成的最外层边界。这个函数通常用于二值图像处理,尤其是在形状分析或物体检测任务中。 当你想要找到一个轮廓中最突出、面积最大的凸包时,可以按照以下步骤操作: 1. **读取并预处理图像**:首先通过 `cv::imread()` 读取图像,并将其转换为灰度图像或二值图像,以便进行后续操作。 2. **边缘检测**:使用 OpenCV 的边缘检测算法(如 Canny 边缘检测)获取图像的轮廓。 3. **轮廓提取**:对边缘图像调用 `findContours()` 函数,它会返回所有的轮廓及其对应的层级。 4. **选择最大轮廓**:从提取的轮廓中选择面积最大的那个,这通常是通过比较每个轮廓的区域(`contourArea()`)来进行的。 5. **计算凸包**:对选定的最大轮廓应用 `convexHull()` 函数,返回的是凸包的顶点集合。 6. **绘制结果**:最后,可以用 `drawContours()` 来在原始图像上画出凸包,显示最突出的部分。 下面是一个简化的示例代码片段(假设 `img` 是输入图像,`contours` 和 `hierarchy` 是轮廓信息): ```cpp vector<vector<Point>> contours = findContours(img, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); sort(contours.begin(), contours.end(), [](const vector<Point>& a, const vector<Point>& b) { return contourArea(a) > contourArea(b); }); if (!contours.empty()) { vector<Point> hull; convexHull(contours[0], hull); // 假设我们只关心第一个轮廓,如果需要考虑所有轮廓,就循环处理 drawContours(img, {hull}, -1, Scalar(0, 0, 255), 2); // 绘制凸包,颜色为红色 } imshow("Convex Hull", img); ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值