文章目录
1 简介
https://www.elastic.co/cn/what-is/elasticsearch
全文搜索属于最常见的需求,开源的 Elasticsearch是目前全文搜索引擎的首选。
它可以快速地储存、搜索和分析海量数据。维基百科、Stack Overflow、Github都采用它
Elastic 的底层是开源库Lucene。但是,你没法直接用Lucene,必须自己写代码去调用它的接口。Elastic是 Lucene的封装,提供了REST API的操作接口,开箱即用。
REST API:天然的跨平台。
官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
官方中文:https://www.elastic.co/guide/cn/elasticsearch/guide/current/foreword_id.html
社区中文:
https://es.xiaoleilu.com/index.html
http://doc.codingdict.com/elasticsearch/0/
2 基础概念
2.1 Index(索引)
动词:相当于MySQL中的 insert
名词:相当于MySQL中的 Database
2.2 Type(类型)
在Index(索引)中,可以定义一个或多个类型。
类似于MySQL中的 Table ;每一种类型的数据放在一起;
2.3 Document(文档)
保存在某个索引(Index)下,某种类型(Type)的一个数据(Document),文档是JSsON格式的,Document就像是MySQL中的某个 Table里面的内容;
2.4 倒排索引
3 Docker安装
3.1 下载镜像文件
docker pull elasticsearch:7.4.2 # 存储和检索数据
docker pull kibana:7.4.2 # 可视化检索数据
3.2 创建实例
3.2.1 elasticsearch
1、配置映射文件
mkdir -p /mydata/elasticsearch/config
mkdir -p /mydata/elasticsearch/data
echo "http.host: 0.0.0.0" >/mydata/elasticsearch/config/elasticsearch.yml
2、设置权限
chmod -R 777 /mydata/elasticsearch/
3、启动elasticsearch
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms64m -Xmx128m" \
-v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.4.2
4、查看9200端口,云服务器记得配置安全组
5、设置开机启动
docker update elasticsearch --restart=always
6、查看elasticsearch日志
docker logs elasticsearch
7、查看所有节点
https://192.168.56.10:9200/_cat/nodes
3.2.2 Kibana
启动Kibana
http://192.168.56.10:9200 改成自己Elasticsearch上的地址
docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.56.10:9200 -p 5601:5601 -d kibana:7.4.2
PS:启动很慢,要等几分钟
设置开机启动
docker update kibana --restart=always
4 初步检索
4.1 _cat
GET /_cat/nodes
:查看所有节点
GET /_cat/health
:查看es 健康状况
GET /_cat/master
:查看主节点
GET /_cat/indices
:查看所有索引 show databases;
4.2 索引一个文档(保存)
保存一个数据,保存在哪个索引的哪个类型下,指定用哪个唯一标识
PUT customer/external/1
;
在customer索引下的 external类型下保存1号数据为
PUT customer/external/1
{
"name": "John Doe"
}
PUT和POST都可以
POST新增。如果不指定id,会自动生成id。指定id就会修改这个数据,并新增版本号
PUT可以新增可以修改。PUT必须指定 id;由于PUT需要指定id,我们一般都用来做修改操作,不指定id会报错。
4.3 查询文档
GET customer/external/1
结果:
{
"_index":"customer", // 在哪个索引
"_type":"external", // 在哪个类型
"id":"1", // 记录id
"_version":2, // 版本号
"_seq_no":1, // 并发控制字段,每次更新就会+1,用来做乐观锁
"_primary_term":1, // 同上,主分片重新分配,如重启,就会变化
"found":true,
"_source":{
"name":"John Doe"
}
}
更新携带:?if_seq_no=0&if_primary_term=1
4.4 更新文档
POST customer/external/1/_update
{
"doc":{
"name":"John"
}
}
或者
POST customer/external/1
{
"name":"John"
}
或者
PUT customer/external/1
{
"name":"John"
}
不同:
POST操作会对比源文档数据,如果相同不会有什么操作,文档version不增加PUT 操作总会将数据重新保存并增加version 版本;
带_update对比元数据如果一样就不进行任何操作。
看场景:
对于大并发更新,不带update;
对于大并发查询偶尔更新,带update对比更新,重新计算分配规则。
更新的同时增加属性
POST customer/external/1/_update
{
"doc":{
"name":"jane",
"age":20
}
}
PUT 和 POST 不带 _update 也可以
4.5 删除文档&索引
DELETE customer/external/1
DELETE customer
4.6 bulk批量API
示例:
POST customer/external/_bulk
{"index":{"_id":"1"}}
{"name":"John Doe"}
{"index":{"_id":"2"}}
{"name":"Jane Doe"}
语法格式:
{action:{metadata}}
{request body}
{action:{metadata}}
{request body}
复杂实例:
POST /_bulk
{"delete":{"_index":"website","_type":"blog","_id":"123"}}
{"create":{"_index":"website","_type":"blog","_id":"123"}}
{"title":"My first blog post"}
{"index":{"_index":"website","_type":"blog"}}
{"title":"My second blog post"}
{"update":{"_index":"website","_type":"blog","_id":"123"}}
{"doc":{"title":"My updated blog post"}}
bulk API以此按顺序执行所有的 action(动作)。如果一个单个的动作因任何原因而失败,它将继续处理它后面剩余的动作。当bulk API返回时,它将提供每个动作的状态(与发送的顺序相同),所以您可以检查是否一个指定的动作是不是失败了。
4.7 样本测试数据
地址:https://raw.githubusercontent.com/elastic/elasticsearch/7.4/docs/src/test/resources/accounts.json
POST /bank/account/_bulk
5 进阶检索
5.1 SearchAPI
ES支持两种基本方式检索∶
-
一个是通过使用 REST request URI 发送搜索参数( uri+检索参数)
-
另一个是通过使用 REST request body来 发送它们(uri请求体)
检索信息
- 一切检索从 _search 开始
GET bank/_search:检索bank下所有信息,包括type和docs
GET bank/_search?q=*&sort=account_number:asc:请求参数方式检索
响应结果解释:
took:Elasticsearch执行搜索的时间(毫秒)
time_out:告诉我们搜索是否超时
_shards:告诉我们多少个分片被搜索了,以及统计了成功/失败的搜索分片
hits:搜索结果
hits.total:搜索结果
hits.hits:实际的搜索结果数组(默认为前10 的文档)
sort:结果的排序key(键)(没有则按score排序)
score和 max_score:相关性得分和最高得分(全文检索用)
URI + 请求体进行检索:
GET bank/_search
{
"query":{
"match_all":{}
},
"sort":[
{
"account_number":{
"order":"desc"
}
}
]
}
HTTP客户端工具(POSTMAN), get 请求不能携带请求体,我们变为post也是一样的我们POST一个JSON风格的查询请求体到_search APl。
需要了解,一旦搜索的结果被返回,Elasticsearch就完成了这次请求,并且不会维护任何服务端的资源或者结果的cursor(游标)
5.2 Query DSL
5.2.1 基本语法格式
Elasticsearch提供了一个可以执行查询的Json风格的 DSL(domain-specific language领域特定语言)。这个被称为Query DSL。该查询语言非常全面,并且刚开始的时候感觉有点复杂,真正学好它的方法是从一些基础的示例开始的。
- 一个查询语句的典型结构
{
QUERY_NAME:{
ARGUMENT:VALUE,
ARGUMENT:VALUE...
}
}
- 如果是针对某个字段,那么它的结构如下
{
QUERY_NAME:{
FIELD_NAME:{
ARGUMENT:VALUE,
ARGUMENT:VALUE...
}
}
}
示例:
GET bank/_search
{
"query":{
"match_all":{}
},
"from":0,
"size":5,
"sort":[
{
"account_number":{
"order":"desc"
}
}
]
}
- query定义如何查询,
- match_all查询类型【代表查询所有的所有】,es中可以在query中组合非常多的查询类型完成复杂查询
- 除了query参数之外,我们也可以传递其它的参数以改变查询结果。如 sort,size
- from + size限定,完成分页功能
- sort排序,多字段排序,会在前序字段相等时后续字段内部排序,否则以前序为准
5.2.2 返回部分字段
GET bank/_search
{
"query":{
"match_all":{}
},
"from":0,
"size":5,
"_source":["age","balance"]
}
5.2.3 match【匹配查询】
- 基本类型(非字符串),精确匹配
GET bank/_search
{
"query":{
"match":{
}
}
}
match 返回 account_number=20 的
- 字符串,全文检索
GET bank/_search
{
"query":{
"match":{
"address":"mill"
}
}
}
全文检索按照评分进行排序,会对检索条件进行分词匹配
精确匹配
GET bank/_search
{
"query":{
"match":{
"address.keyword":"789 Madison"
}
}
}
5.2.4 match_phase【短语匹配】
将需要匹配的值当成一个整体单词(不分词)进行检索
GET bank/_search
{
"query":{
"match_phase":{
"address":"mill_road"
}
}
}
查出 address 中包含 mill road 的所有记录,并给出相关性得分
5.2.5 multi_match【多字段匹配】
GET bank/_search
{
"query":{
"multi_match":{
"query":"mill",
"fields":["state","address"]
}
}
}
5.2.6 bool【复合查询】
bool 用来做复合查询
复合语句可以合并任何其它查询语句,包括复合语句,了解这一点是很重要的。这就意味着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑。
- must:必须达到的条件
GET bank/_search
{
"query":{
"bool":{
"must":[
{"match":{"address":"mill"}},
{"match":{"gender":"M"}}
]
}
}
}
- should:应该达到should列举的条件,如果达到会增加相关文档的评分,并不会改变查询的结果。如果query中只有should且只有一种匹配规则,那么 should的条件就会被作为默认匹配条件而去改变查询结果
GET bank/_search
{
"query":{
"bool":{
"must":[
{"match":{"address":"mill"}},
{"match":{"gender":"M"}}
],
"should":[
{"match":{"address":"lane"}}
]
}
}
}
- must_not 必须不是指定的情况
GET bank/_search
{
"query":{
"bool":{
"must":[
{"match":{"address":"mill"}},
{"match":{"gender":"M"}}
],
"should":[
{"match":{"address":"lane"}}
],
"must_not":[
{"match":{"email":"baluba.com"}}
]
}
}
}
address包含 mill,并且gender是M,如果address里面有lane最好不过,但是email必须不包含 baluba.com
事件 | 描述 |
---|---|
must | 子句(查询)必须出现在匹配的文档中,并将有助于得分 |
filter | 子句(查询)必须出现在匹配的文档中,然而不像must,此查询的分数将被忽略 |
should | 子句(查询)应出现在匹配文档中,在bool查询中不包含must或filter子句,一个或多个should子句条件的最小数目可通过设置 minimum_should_match参数 |
must_not | 子句(查询)不能出现在匹配的文档中 |
5.2.7 filter【结果过滤】
并不是所有的查询都需要产生分数,特别是那些仅用于“filtering"(过滤)的文档。为了不计算分数Elasticsearch会自动检查场景并且优化查询的执行。
GET bank/_search
{
"query":{
"bool":{
"must":[
{"match":{"address":"mill"}}
],
"filter":{
"range":{
"balance":{
"gte":10000,
"lte":20000
}
}
}
}
}
}
5.2.8 term
和match一样。匹配某个属性的值。全文检索字段用match,其他非text字段匹配用term。
GET bank/_search
{
"query":{
"term":{
"balance":"32838"
}
}
}
5.2.9 aggregations【执行聚合】
聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于SQL GROUPBY和SQL聚合函数。在Elasticsearch 中,您有执行搜索返回hits(命中结果),并且同时返回聚合结果,把一个响应中的所有hits(命中结果)分隔开的能力。这是非常强大且有效的,您可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用一次简洁和简化的API来避免网络往返。
- 搜索address中包含mill的所有人的年龄分布以及平均年龄,但不显示这些人的详情。
GET bank/_search
{
"query":{
"match":{
"address":"mill"
}
},
"aggs":{
"ageAgg":{
"terms":{
"field":"age",
"size":10
}
},
"ageAvg":{
"avg":{
"field":"age"
}
},
"balanceAvg":{
"avg":{
"field":"balance"
}
}
},
"size":0
}
size:0,不显示搜索数据
aggs:执行聚合,聚合语法如下
"aggs":{
"aggs_name 聚合的名字":{
"AGG_TYPE 聚合的类型(avg, term, terms)":{}
}
}
复杂示例
- 按照年龄聚合,并且请求这些年龄段的这些人的平均薪资
GET bank/_search
{
"query": {
"match_all": {}
},
"aggs": {
"ageAgg": {
"terms": {
"field": "age",
"size": 100
},
"aggs": {
"ageAvg": {
"avg": {
"field": "balance"
}
}
}
}
}
}
- 查出所有年龄分布,并且这些年龄段中w的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资
GET bank/_search
{
"query": {
"match_all": {}
},
"aggs": {
"ageAgg": {
"terms": {
"field": "age",
"size": 100
},
"aggs": {
"genderAgg": {
"terms": {
"field": "gender.keyword",
"size": 10
},
"aggs": {
"genderBalanceAvg": {
"avg": {
"field": "balance"
}
}
}
},
"ageBalanceAvg":{
"avg": {
"field": "balance"
}
}
}
}
},
"size": 0
}
5.3 Mapping
5.3.1 字段类型
核心类型
字符串(string)
- text
- keyword
数字类型(Numeric)
- long
- integer
- short
- byte
- double
- float
- half_float
- scaled_float
日期类型(Date)
- date
布尔类型(Boolean)
- boolean
二进制类型(binary)
- binary
复合类型
数组类型(Array)
- Array:支持不针对特定的类型
对象类型(Object)
- object:用于单JSON对象
嵌套类型(Nested)
- nested:用于JSON对象数组
地理类型(Geo)
地理坐标(Geo-points)
- geo_point:用于描述经纬度坐标
地理图形(Geo-Shape)
- geo_shape:用于描述复杂形状,如多边形
特定类型
IP类型
- ip:用于描述 ipv4 和 ipv6 地址
补全类型(Completion )
- completion:提供自动完成提示
令牌计数类型(Token count )
- token_count用于统计李符串中的词条数量
附件类型( attachment )
- 参考mapper-attachements插件,支持将附件如Microsof Оffice格式,Open Document格式,ePub,HTML等等索引为attachment数据类型.
抽取类型(Percolator )
- 接受特定领域查询语言(query-dsl)的查询
5.3.2 映射
Mapping(映射)
Mapping是用来定义一个文档(document),以及它所包含的属性(field)是如何存储和索引的。比如,使用mapping来定义:
- 哪些字符串属性应该被看做全文本属性(full text fields)。
- 哪些属性包含数字,日期或者地理位置。
- 文档中的所有属性是否都能被索引(_all配置)。
- 日期的格式。
- 自定义映射规则来执行动态添加属性。
查看mapping信息:
GET bank/_mapping
修改 mapping 信息
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
自动猜测的映射类型
JSON type | 域 type |
---|---|
布尔型:true 或者 false | boolean |
整数:123 | long |
浮点数:123.45 | double |
字符串,有效日期:2014-09-15 | date |
字符串:foo bar | string |
5.3.3 新版本变化
Es7及以上移除了type的概念。
- 关系型数据库中两个数据表示是独立的,即使他们里面有相同名称的列也不影响使用,但ES中不是这样的。elasticsearch是基于Lucene开发的搜索引擎,而ES中不同type下名称相同的filed最终在Lucene中的处理方式是一样的。
- 两个不同type下的两个user_name,在ES同一个索引下其实被认为是同一个filed,你必须在两个不同的type中定义相同的 filed映射。否则,不同type中的相同字段名称就会在处理中出现冲突的情况,导致Lucene处理效率下降。
- 去掉type就是为了提高ES处理数据的效率。
Elasticsearch 7.x
- URL中的type参数为可选。比如,索引一个文档不再要求提供文档类型。
Elasticsearch 8.x
- 不再支持URL中的type参数。
解决:
- 将索引从多类型迁移到单类型,每种类型文档一个独立索引
- 将已存在的索引下的类型数据,全部迁移到指定位置即可。详见数据迁移
创建映射
创建索引 my_index 并指定映射
PUT /my_index
{
"mappings": {
"properties": {
"age":{"type": "integer"},
"email":{"type": "keyword"},
"name":{"type": "text"}
}
}
}
添加新的字段映射
PUT /my-index/_mapping
{
"properties":{
"employee-id":{
"type":"keyword",
"index":false
}
}
}
更新映射
对于已经存在的映射字段,我们不能更新。更新必须创建新的索引进行数据迁移
数据迁移
先创建出new_twitter的正确映射。然后使用如下方式进行数据迁移
POST _reindex [固定写法]
{
"source":{
"index":"twitter"
},
"dest":{
"index":"new_twitter"
}
}
将旧索引的type下的数据进行迁移
POST _reindex
{
"source":{
"index":"twitter",
"type":"tweet"
},
"dest":{
"index":"tweets"
}
}
示例:
创建 newbank 索引
PUT /newbank
{
"mappings": {
"properties": {
"account_number":{
"type": "long"
},
"address":{
"type": "text"
},
"age":{
"type":"integer"
},
"balance": {
"type":"long"
},
"city" :{
"type": "keyword"
},
"email":{
"type": "keyword"
},
"employer":{
"type":"keyword"
},
"firstname":{
"type": "text"
},
"gender":{
"type": "keyword"
},
"lastname":{
"type": "text",
"fields":{
"keyword":{
"type":"keyword",
"ignore_above":256
}
}
},
"state":{
"type": "keyword"
}
}
}
}
数据转移
POST _reindex
{
"source":{
"index":"bank",
"type":"account"
},
"dest":{
"index":"newbank"
}
}
5.4 分词
一个tokenizer(分词器)接收一个字符流,将之分割为独立的tokens(词元,通常是独立的单词),然后输出tokens流。
例如,whitespace tokenizer遇到空白字符时分割文本。它会将文本“Quick brown fox!"分割为**[Quick, brown, fox!]**。
该tokenizer(分词器)还负责记录各个term(词条)的顺序或position位置(用于phrase短语和word proximity词近邻查询),以及term(词条)所代表的原始word(单词)的start(起始)和end(结束)的character offsets(字符偏移量)(用于高亮显示搜索的内容)。Elasticsearch提供了很多内置的分词器,可以用来构建custom analyzers(自定义分词器)。
5.4.1 安装ik分词器
**注意:**不能用默认elasticsearch-plugin install xoox.zip进行自动安装
**下载地址:**https://github.com/medcl/elasticsearch-analysis-ik/releases/tag/v7.4.2
将压缩包解压后的文件放入==/mydata/elasticsearch/plugins==路径下
设置权限
chmod -R 777 ik/
确认插件是否安装完成
- 进入es容器内部,
docker exec -it 容器id /bin/bash
- 进入bin目录,输入
elasticsearch-plugin list
重启elasticsearch
docker restart elasticsearch
测试分词器
POST _analyze
{
"analyzer": "ik_smart",
"text": "我是中国人"
}
5.4.2 重新配置es
-
修改虚拟机内存大小为3G
-
停止es,
docker stop elasticsearch
-
移除es,
docker rm elasticsearch
-
创建新的es
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \ -e "discovery.type=single-node" \ -e ES_JAVA_OPTS="-Xms64m -Xmx512m" \ -v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \ -v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \ -v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \ -d elasticsearch:7.4.2
-
设置开机自启:
docker update elasticsearch --restart=always
5.4.3 安装nginx
-
在 mydata 目录下新建一个 nginx 目录
-
随便启动一个 nginx 实例,只是为了复制出配置:
docker run -p 80:80 --name nginx -d nginx:1.10
-
将容器内的配置文件拷贝到当前目录,注意在mydata目录下执行命令:
docker container cp nginx:/etc/nginx .
-
将nginx目录下的所有文件放入conf目录下
-
停止 nginx 容器:
docker stop nginx
-
删除 nginx 容器:
docker rm nginx
-
创建新的 nginx 容器:
docker run -p 80:80 --name nginx \ -v /mydata/nginx/html:/usr/share/nginx/html \ -v /mydata/nginx/logs:/var/log/nginx \ -v /mydata/nginx/conf:/etc/nginx \ -d nginx:1.10
-
进入 /mydata/nginx/html 创建 index.html,写入
gulimall
,到地址http://192.168.56.10/查看
-
设置开机自启:
docker update nginx --restart=always
5.4.2 自定义词库
-
创建es分词表
# 在html目录下 mkdir es cd es vim fenci.txt # 写入一些词语
-
修改/mydata/elasticsearch/plugins/ik/config 中的 IKAnalyzer.cfg.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict"></entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry>
<!--用户可以在这里配置远程扩展字典 -->
<entry key="remote_ext_dict">http://192.168.56.10/es/fenci.txt</entry>
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
-
重启elasticsearch:docker restart elasticsearch
-
测试分词
POST _analyze { "analyzer": "ik_smart", "text": "尚硅谷教育" }
6 Elasticsearch-Rest-Client
6.1 简介
9300:TCP
- spring-data-elasticsearch:transport-api.jar
- springboot版本不同,transport-api.jar不同,不能适配es版本
- 7.x已经不建议使用,8以后就要废弃
9200:HTTP
- JestClient非官方,更新慢
- RestTemplate:模拟发HTTP请求,Es很多操作需要自己封装,麻烦
- HttpClient:同上
- Elasticsearch-Rest-Client:官方RestClient,封装了ES操作,API层次分明,上手简单
最终选择Elasticsearch-Rest-Client (elasticsearch-rest-high-level-client)
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html
6.2 整合springboot
1、新建模块
2、依赖选择Spring Web
3、导入依赖,修改版本
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.4.2</version>
</dependency>
<dependency>
<groupId>com.atguigu.gulimall</groupId>
<artifactId>gulimall-common</artifactId>
<version>0.0.1-SNAPSHOT</version>
</dependency>
<properties>
<java.version>1.8</java.version>
<elasticsearch.version>7.4.2</elasticsearch.version>
</properties>
4、编写配置类config.GulimallElasticSearchConfig
,给容器注入一个RestHighLevelClient
@Configuration
public class GulimallElasticSearchConfig {
@Bean
public RestHighLevelClient restHighLevelClient() {
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(
new HttpHost("192.168.56.10", 9200, "http")));
return client;
}
}
5、注册进nacos,地址,名字,注解
application.properties
spring.cloud.nacos.discovery.server-addr=127.0.0.1:8848
spring.application.name=gulimall-search
GulimallSearchApplication.java
这里排除DataSourceAutoConfiguration
,因为在common里导入了mybatis依赖,而在search模块里我们没有配置数据库,运行时会报错
@EnableDiscoveryClient
@SpringBootApplication(exclude = DataSourceAutoConfiguration.class)
public class GulimallSearchApplication {
public static void main(String[] args) {
SpringApplication.run(GulimallSearchApplication.class, args);
}
}
6、测试
坑:报错Failed to process import candidates for configuration class [com.atguigu.gulimall.search.GulimallSearchApplication]; nested exception is java.lang.IllegalArgumentException: Could not find class [org.springframework.cloud.client.loadbalancer.reactive.OnNoRibbonDefaultCondition]
**问题原因:**可能是spring cloud的版本又对不上了
**解决方法:**修改spring cloud的版本,完整pom.xml:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.6.6</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.atguigu.gulimall</groupId>
<artifactId>gulimall-search</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>gulimall-search</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>1.8</java.version>
<elasticsearch.version>7.4.2</elasticsearch.version>
<spring-cloud.version>2021.0.1</spring-cloud.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.4.2</version>
</dependency>
<dependency>
<groupId>com.atguigu.gulimall</groupId>
<artifactId>gulimall-common</artifactId>
<version>0.0.1-SNAPSHOT</version>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${spring-cloud.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
测试方法
@SpringBootTest
class GulimallSearchApplicationTests {
@Autowired
RestHighLevelClient client;
@Test
void test1() {
System.out.println(client);
}
}
6.3 测试保存数据
1、修改GulimallElasticSearchConfig
@Configuration
public class GulimallElasticSearchConfig {
public static final RequestOptions COMMON_OPTIONS;
static {
RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
COMMON_OPTIONS = builder.build();
}
@Bean
public RestHighLevelClient restHighLevelClient() {
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(
new HttpHost("192.168.56.10", 9200, "http")));
return client;
}
}
2、测试
导入依赖fastjson
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.28</version>
</dependency>
测试代码
@Test
void test2() throws IOException {
// 创建索引
IndexRequest indexRequest = new IndexRequest("users");
indexRequest.id("1"); // 数据的id
User user = new User("张三", "男", 18);
String jsonString = JSON.toJSONString(user);
indexRequest.source(jsonString, XContentType.JSON);
// 执行操作
IndexResponse index = client.index(indexRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
// 提取有用的响应数据
System.out.println(index);
}
@Data
@AllArgsConstructor
class User{
private String userName;
private String gender;
private Integer age;
}
6.4 测试复杂检索
1、创建Account类
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Account {
private int account_number;
private int balance;
private String firstname;
private String lastname;
private int age;
private String gender;
private String address;
private String employer;
private String email;
private String city;
private String state;
}
2、测试代码
@Test
void test3() throws IOException {
// 1. 创建检索请求
SearchRequest searchRequest = new SearchRequest();
// 2. 指定索引
searchRequest.indices("bank");
// 3. 指定DSL,检索条件
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
// 4. 构造检索条件
sourceBuilder.query(QueryBuilders.matchQuery("address", "mill"));
// 4.1. 按照年龄的值分布进行聚合
TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
sourceBuilder.aggregation(ageAgg);
// 4.2. 计算平均薪资
AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");
sourceBuilder.aggregation(balanceAvg);
System.out.println(sourceBuilder);
searchRequest.source(sourceBuilder);
// 5. 执行检索
SearchResponse searchResponse = client.search(searchRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
// 6. 分析结果
System.out.println(searchResponse.toString());
// 6.1. 获取所有查到的数据
SearchHits hits = searchResponse.getHits();
SearchHit[] searchHits = hits.getHits();
for (SearchHit hit : searchHits) {
String sourceAsString = hit.getSourceAsString();
Account account = JSON.parseObject(sourceAsString, Account.class);
System.out.println("Account:" + account);
}
// 6.2 获取这次所检索到的聚合信息
Aggregations aggregations = searchResponse.getAggregations();
Terms ageAgg1 = aggregations.get("ageAgg");
for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
String keyAsString = bucket.getKeyAsString();
System.out.println("年龄:" + keyAsString);
}
Avg balanceAvg1 = aggregations.get("balanceAvg");
System.out.println("平均薪资:" + balanceAvg1.getValue());
}