图像处理
文章平均质量分 74
无止境x
现为中科院工程师,更多内容关注微信公众号《科学无止境》。
研究生期间的算法工程师,毕业后进入中科院从事科学装置和系统的研究,分享AI和云计算领域的内容,一个有点自己想法的IT从业者,欢迎关注交流!
展开
-
图像插值技术——双线性插值法
https://www.cnblogs.com/gshang/p/12968496.html在图像处理中,如果需要对图像进行缩放,一般可以采取插值法,最常用的就是双线性插值法。本文首先从数学角度推导了一维线性插值和二维线性插值的计算过程,并总结了规律。随后将其应用到图像的双线性插值上,利用Matlab编程进行图像的缩放验证,实验证明,二维线性插值能够对图像做出较好的缩放效果。数学角度的线性插值一维线性插值假设有一个一元函数y=f(x)y=f(x), 已知曲线上的两点,AA和BB...转载 2020-12-18 11:41:57 · 2643 阅读 · 0 评论 -
高斯滤波原理及python代码(opencv代码)
Reference:https://blog.csdn.net/angelia_yue/article/details/1057943441.什么是高斯滤波高斯滤波器是一种线性滤波器,能够有效的抑制噪声2.高斯滤波作用高斯滤波器对于抑制服从正态分布的噪声非常有效3.计算步骤1. 根据高斯函数和像素点的位置,计算滤波器每个点的值,对滤波器的值做归一化,得到权重矩阵2. 图像中的区域每个点滤波器矩阵的值3. 对得到的计算结果的矩阵求和,得到的和就是原图像矩阵中心点的滤波...原创 2020-11-10 17:39:52 · 10025 阅读 · 2 评论 -
图像边缘检测-Canny,Sobel等算子
一.前言首先我们先来简单了解一下什么是数字图像处理(Digital Image Processing),先看一下数字图像主要的两个应用领域:1.改善图示信息以便人们解释;2.为存储、传输和表示而对图像数据进行处理,以便于机器自动理解我们可以简单理解为就将一幅原始图像,使用计算机处理为更为我们所能理解或所需要的形式,如图1-1所示,为基于边缘检测的免疫细胞图像自动分割过程示意图图 1-1 克隆细胞图像自动分割过程示意图让我们再看一个例子,如图1-2 ,为经典的车牌检测算法,将原始图转载 2020-11-10 16:56:21 · 5070 阅读 · 1 评论 -
高斯滤波详解 附python和matlab高斯滤波代码
https://blog.csdn.net/angelia_yue/article/details/105794344https://www.jianshu.com/p/4eaf349de9e9一. 高斯滤波高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声。高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于...转载 2020-11-08 22:53:19 · 12131 阅读 · 1 评论 -
图像质量评价指标之PSNR和SSIM
https://www.cnblogs.com/seniusen/p/10012656.html转载 2020-10-08 16:30:21 · 299 阅读 · 0 评论 -
医学病理图像:细胞间质与间质细胞的区别
1、定义区别:间质细胞是:这个器官内存在的那些辅助实质细胞完成器官功能的细胞。细胞间质是:由细胞产生的不具有细胞形态和结构的物质,它包括纤维、基质和流体物质(组织液、淋巴液、血浆等)。2、作用不同:比如脑内的神经元细胞就是实质细胞,神经胶质细胞起支持营养神经细胞的作用,算是一种间质细胞,再如肝脏细胞是实质细胞,肝小叶间的纤维细胞就是间质细胞,起支持作用。细胞间质对细胞起着支持、保护、连结和营养作用,参与构成细胞生存的微环境。扩展资料:细胞间质是人体细胞所生活的液.原创 2020-09-17 15:28:17 · 5275 阅读 · 0 评论 -
OpenCV查找-绘制轮廓(cv2.findCountours函数,cv2.drawContours())
什么是轮廓轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。为了准确,要使用二值化图像。需要进行阀值化处理或者Canny边界检测。 查找轮廓的函数会修改原始图像。如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。 在OpenCV中,查找轮廓就像在黑色背景中找白色物体。你应该记住,要找的物体应该是白色而背景应该是黑色。 如何在一个二值图像中查找轮廓。 函数cv2.findContours()有三个参数,第一个是输入原创 2020-09-09 11:28:16 · 1830 阅读 · 0 评论 -
PIL的使用
PIL的使用from PIL import Image, ImageFilter, ImageDraw1.加载图片图片对象 = Image.open(图片地址)2.使用滤镜image1.filter(滤镜效果)"""滤镜效果:ImageFilter.EMBOSS - 浮雕效果ImageFilter.FIND_EDGES - 泼墨效果ImageFilter.SHARPEN - 锐化滤波ImageFilter.SMOOTH - 平滑滤波ImageFilt转载 2020-08-05 13:48:46 · 188 阅读 · 0 评论 -
TypeError: crop() takes from 1 to 2 positional arguments but 5 were given
PIL的crop裁剪操作im_crop = im.crop(left,top,right,bottom)TypeError: crop() takes from 1 to 2 positional arguments but 5 were given解决之道:将crop中的left、top、right、bottom封装成一个元组 crop((left,top,right,bottom))...原创 2020-08-05 13:42:49 · 5024 阅读 · 0 评论 -
这个博主的文章会用到
https://blog.csdn.net/weixin_43309755/article/list/1原创 2020-01-13 20:31:36 · 151 阅读 · 0 评论 -
OpenCV-python 高通滤波器
前言本节将要介绍OpenCV 提供的三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr 和 Laplacian。总的来说:Sobel,Scharr 其实就是求一阶或二阶导数。Scharr 是对 Sobel(使用小的卷积核求解求解梯度角度时)的优化。而Laplacian 是求二阶导数。一、Sobel算子其API如下:dst = cv2.Sobel(src, dde...转载 2020-01-13 20:20:14 · 1130 阅读 · 0 评论 -
BMP位图图像文件—图像信息丰富,几乎不进行压缩
BMP是英文Bitmap(位图)的简写,它是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。随着Windows操作系统的流行与丰富的Windows应用程序的开发,BMP位图格式理所当然地被广泛应用。这种格式的特点是包含的图像信息较丰富,几乎不进行压缩,但由此导致了它与生俱生来的缺点--占用磁盘空间过大。所以,目前BMP在单机上比较流行。简介BMP(Bit...原创 2019-12-29 11:33:57 · 2155 阅读 · 0 评论 -
图像奇异值分解SVD遇到的奇怪问题
一开始做图像奇异值分解实验,用的u, sigma, v = np.linalg.svd()出来的全是乱码图像怎么调整都不行,简直要抓狂了 ` 0 ` !!!后来在别人电脑上跑了一下,竟然有效果!找问题!!调整numpy的版本,pip install numpy==1.16.5果然解决了!!!应该是numpy版本问题,或者文件损坏了,么得办法!...原创 2019-12-28 12:15:55 · 678 阅读 · 0 评论 -
奇异值的意义
矩阵的奇异值是一个数学意义上的概念,一般是由奇异值分解(Singular Value Decomposition,简称SVD分解)得到。如果要问奇异值表示什么物理意义,那么就必须考虑在不同的实际工程应用中奇异值所对应的含义。下面先尽量避开严格的数学符号推导,直观的从一张图片出发,让我们来看看奇异值代表什么意义。这是女神上野树里(Ueno Juri)的一张照片,像素为高度450*宽度333。暂停...转载 2019-12-26 15:07:32 · 1599 阅读 · 0 评论 -
如何理解 YUV
YUV是一种彩色编码系统,主要用在视频、图形处理流水线中(pipeline)。相对于 RGB 颜色空间,设计 YUV 的目的就是为了编码、传输的方便,减少带宽占用和信息出错。人眼的视觉特点是对亮度更铭感,对位置、色彩相对来说不敏感。在视频编码系统中为了降低带宽,可以保存更多的亮度信息(luma),保存较少的色差信息(chroma)。Y’UV、YUV、YCbCr、YPbPr 几个概念其实是...转载 2019-12-21 20:40:02 · 513 阅读 · 0 评论 -
RGB与YCbCr颜色系统
1.RGBRGB色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红、绿、蓝三个通道的颜色,这个标准几乎包括了人类视力所能感知的所有颜色,是目前运用最广的颜色系统之一。2.YCbCr 是在计算机系统中应用最多的成员,其应用领域很广泛,JPEG、MPEG均采用此格式。YCbCr其中Y是指亮度分...转载 2019-12-21 17:04:16 · 4927 阅读 · 0 评论 -
机器学习的十大图像分类数据集
机器学习的十大图像分类数据集为了帮助构建对象识别模型,场景识别模型等,编制了最佳图像分类数据集的列表。这些数据集的范围和大小各不相同,可以适应各种用例。此外数据集已分为以下几类:医学成像,农业和场景识别等。医学图像分类数据集1. 递归蜂窝图像分类–此数据来自递归2019挑战。竞赛的目标是利用生物显微镜数据开发可识别复制品的模型。关于比赛的全部信息可以在这里...转载 2019-12-19 16:55:01 · 6844 阅读 · 1 评论 -
理想低通滤波器
首先画出3D的理想低通滤波器 然后给出原始图像和理想低通滤波器后的图像转载 2019-12-12 10:30:18 · 778 阅读 · 0 评论 -
滤波器_理想低通滤波器python案例
一:基于opencv傅立叶变换的低通滤波#导入相关库import cv2import numpy as npimport matplotlib.pyplot as plt#使用cv2 读入图片new_img=cv2.imread('person.jpg',0)#pencv中的傅立叶变化dft=cv2.dft(np.float32(new_img),flags=cv2.DFT...转载 2019-12-06 20:47:42 · 2123 阅读 · 0 评论 -
频率与傅里叶变换的物理意义
频率域的属性傅里叶变换的作用是全局的 图像中的特定成分与频率没有直接关系 关于频率的直觉变换问题的引入傅里叶变换的物理意义幅度谱表明了各正弦分量出现的多少。 相位信息则表明了正弦分量出现的位置。 傅里叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数。•由于图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的...原创 2019-12-04 16:55:16 · 1428 阅读 · 0 评论 -
Python+OpenCv 理想滤波 巴特沃兹滤波 高斯滤波 程序代码
网上matlab的图像处理资料非常丰富,python作为一个流行的脚本语言,也具备图像处理能力,其丰富的第三方库为科学计算提供了很大便利,在图像分析领域也有强大的openCV接口来支撑,下面是用python借鉴实现的几种常见的频率滤波器# coding=utf-8import cv2import numpy as np'''opencv 理想滤波、巴特沃兹滤波和高斯滤波的高通、...转载 2019-12-03 15:44:30 · 2235 阅读 · 0 评论 -
量化(Quantization)
量化是将各个像素所含的明暗信息离散化后,用数字来表示。一般的量化值为整 数。 充分考虑到人眼的识别能力之后,目前 非特殊用途的图像均为8bit量化,即用[0 255]描述“从黑到白”。...原创 2019-12-02 16:42:08 · 1694 阅读 · 0 评论 -
【图像处理】OpenCV系列三十五--- equalizeHist函数详解
上一节,我们学习了如何对两个直方图进行比较,看两幅图像的相似度是多少,经过上节的学习,相信大家对compareHist函数已经有了一个清晰的理解,本届呢,我们学习如何对一幅图像进行均衡化!1、函数原型void equalizeHist(InputArray src, OutputArray dst)2、函数功能直方图均衡化,用于提高图像的质量;该函数使用以下算法对输入...转载 2019-12-02 11:44:14 · 8611 阅读 · 1 评论 -
OpenCv—图像直方图均衡化cv2.equalizeHist
一、图像直方图 图像的构成是有像素点构成的,每个像素点的值代表着该点的颜色(灰度图或者彩色图)。所谓直方图就是对图像的中的这些像素点的值进行统计,得到一个统一的整体的灰度概念。直方图的好处就在于可以清晰了解图像的整体灰度分布,这对于后面依据直方图处理图像来说至关重要。一般情况下直方图都是灰度图像,直方图x轴是灰度值(一般0~255),y轴就是图像中每一个灰度级对应的像素点的个数。...转载 2019-12-02 11:41:20 · 4987 阅读 · 0 评论 -
图像直方图概述、计算与绘制
文章目录1.图像直方图概述 2.直方图的计算与绘制 2.1 计算直方图:calcHist() 函数 2.2 寻找最值:minMaxLoc() 函数 2.3 示例程序:绘制 H-S 直方图 2.4 示例程序:计算并绘制图像一维直方图 2.5 示例程序:绘制 RGB 三色直方图1.图像直方图概述 直方图广泛运用于很多计算机视觉运用当中,通过标记帧与帧之间显著的边缘和颜色的统计...转载 2019-12-01 14:43:58 · 1581 阅读 · 0 评论 -
matplotlib.pyplot.hist绘制直方图函数
matplotlib.pyplot.hist( x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype=u'bar', align=u'mid', orientation=u'vertical', rwidt...原创 2019-11-29 17:24:39 · 2873 阅读 · 0 评论 -
Python+OpenCV图像处理之图像直方图
Python+OpenCV图像处理之图像直方图(一)图像直方图要画直方图必须要安装matplotlib库,Matplotlib是一个 Python 的 2D绘图库。图像直方图是反映一个图像像素分布的统计表,其横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以...转载 2019-11-29 16:41:44 · 626 阅读 · 0 评论 -
图像颜色反转方法
前言图像颜色的反转,比较简单的思路就是使用255减去当前值,从而得到反转后的图像.原始图片:1.灰度图像的颜色反转import cv2import numpy as np# 灰度 0-255 255-当前灰度值img = cv2.imread('image0.jpg', 1)imgInfo = img.shapeheight = imgInfo[0]width = im...转载 2019-11-29 14:54:25 · 4096 阅读 · 0 评论 -
低通滤波low-pass-filter
https://blog.csdn.net/u010608296/article/details/86061939#噪声高斯噪声:是指噪声服从高斯分布,即某个强度的噪声点个数最多,离这个强度越远噪声点个数越少,且这个规律服从高斯分布。高斯噪声是一种加性噪声,即噪声直接加到原图像上,因此可以用线性滤波器滤除。 主要由阻性元器件内部产生椒盐噪声:类似把椒盐撒在图像上,因此得名,是一种在图像...原创 2019-11-27 22:22:50 · 2750 阅读 · 0 评论 -
一:图像标准化处理
使用深度学习在进行图像分类或者对象检测时候,首先需要对图像做数据预处理,最常见的对图像预处理方法有两种,正常白化处理又叫图像标准化处理,另外一种方法叫做归一化处理,下面就详细的说一下这两种处理方法。一:图像标准化处理标准化处理的公式如下:tensorflow中对图像标准化预处理的API函数如下:tf.image.per_image_standardization(image)...转载 2019-11-08 22:21:39 · 7463 阅读 · 0 评论 -
二:图像归一化处理
二:图像归一化处理图像归一化最常见的就是最大最小值归一化方法,公式如下:OpenCV中实现图像最大与最小值归一化的函数如下: normalize( src, // 表示输入图像, numpy类型 dst, // 表示归一化之后图像, numpy类型 alpha=None, // 归一化中低值 min beta=None, // 归一化中的高值max norm_type=No...原创 2019-11-08 22:19:59 · 36545 阅读 · 7 评论 -
简述图像归一化
# 图像归一化,将图像的各像素值归一化到0~1区间。 train_images /= 255 test_images /= 255在深度学习中,对数据进行归一化是为了将特征值尺度调整到相近的范围。如果不归一化,尺度大的特征值,梯度也比较大,尺度小的特征值,梯度也比较小,而梯度更新时的学习率是一样的,如果学习率小,梯度小的就更新慢,如果学习率大,梯度大的方...原创 2019-11-08 17:39:49 · 3129 阅读 · 0 评论 -
tif与jpeg格式
TIF格式,缺点体积大,优点是能最大限度地还原图像。JPEG格式,缺点保存后图片失真比较大,存储的图像会丢失一部分细节,优点是它的压缩率是相当高的。TIF格式是一种压缩最小的图片处理格式,基本不损失图象信息,但其缺陷就是文件体积太大。JPEG是一种压缩比比较大的图片格式,图片以JPEG格式保存以后,会损失掉不少图片信息,但其好处就是图片体积小,放在电脑里,可以占用较小的空间,在网上传播...原创 2019-10-30 22:07:08 · 1836 阅读 · 0 评论 -
Python3与OpenCV3.3 图像处理(十八)--Canny边缘提取
版权声明:原创内容,转载请注明来源 https://blog.csdn.net/gangzhucoll/article/details/78824590一、什么是边缘检测图像的边缘检测的原理是检测出图像中所有灰度值变化较大的点,而且这些点连接起来就构成了若干线条,这些线条就可以称为图像的边缘。二、canny 算法五步骤高斯模糊 灰度转换 计算梯度 非最大信号抑制 高低...转载 2018-09-09 16:54:17 · 244 阅读 · 0 评论 -
python轮廓检测算法
转:https://www.jb51.net/article/122475.htmhttps://blog.csdn.net/qq_25964837/article/details/79078491#coding=utf-8 import cv2 import numpy as np img = cv2.imread("temp.jpg") #载入图像h, w = img...转载 2018-09-06 21:02:39 · 1570 阅读 · 0 评论 -
OpenCV(开源计算机视觉库)
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C...原创 2018-09-13 17:31:32 · 9673 阅读 · 0 评论 -
Opencv中查找轮廓的函数-cv2.findContours()
https://blog.csdn.net/gaoranfighting/article/details/34877549OpenCV-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓。 实现使用方式如下:import cv2 img = cv2.imread('D:\\test\\contour.jpg')gray = cv2.cvtCo...转载 2018-09-13 17:48:07 · 2685 阅读 · 0 评论 -
Opencv学习之颜色空间转换cvtColor()
转:https://blog.csdn.net/keith_bb/article/details/53470170我们生活中大多数看到的彩色图片都是RGB类型,但是在进行图像处理时,需要用到灰度图、二值图、HSV、HSI等颜色制式,opencv提供了cvtColor()函数来实现这些功能。首先看一下cvtColor函数定义: C++: void cvtColor(InputArray s...转载 2018-09-13 19:49:58 · 436 阅读 · 0 评论 -
OpenCV中的轮廓及性质
转:https://www.kancloud.cn/aollo/aolloopencv/272892OpenCV中的轮廓1.1什么是轮廓轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。为了准确,要使用二值化图像。需要进行阀值化处理或者Canny边界检测。 查找轮廓的函数会修改原始图像。如果之后想继续使用原始图像...转载 2018-09-13 20:29:11 · 820 阅读 · 0 评论 -
opencv函数 cvContourArea 计算轮廓面积
转:https://blog.csdn.net/wjq123000/article/details/52077961这个面积指的是连通域轮廓线所包含的区域的面积(别喷我,这不是废话)。轮廓线包含N个顶点,这些顶点的位置是对应像素的中心点,面积就是从这些个中心点开始算的。下面我上个简易图(比较烂,但是聪明如你会明白的)上图中左侧7个小方格表示一个连通区域(目标),黑点表示轮廓线的顶点,虚...转载 2018-09-23 22:12:00 · 5900 阅读 · 2 评论