tf.nn.bias_add和tf.add、tf.add_n函数的作用和用法

https://blog.csdn.net/weixin_38698649/article/details/80100737

tf.nn.bias_add()


    import tensorflow as tf

    a=tf.constant([[1,1],[2,2],[3,3]],dtype=tf.float32)

    b=tf.constant([1,-1],dtype=tf.float32)

    c=tf.constant([1],dtype=tf.float32)

    with tf.Session() as sess:

    print('bias_add:')

    print(sess.run(tf.nn.bias_add(a, b)))

    #执行下面语句错误

    #print(sess.run(tf.nn.bias_add(a, c)))

    print('add:')

    print(sess.run(tf.add(a, c)))

输出结果:

bias_add:
[[ 2. 0.]
[ 3. 1.]
[ 4. 2.]]
add:
[[ 2. 2.]
[ 3. 3.]

[ 4. 4.]]

tf.add_n(inputs,name=None)

函数是实现一个列表的元素的相加。就是输入的对象是一个列表,列表里的元素可以是向量,矩阵等但没有广播功能

例子:

import tensorflow as tf;  
import numpy as np;  
  
input1 = tf.constant([1.0, 2.0, 3.0])  
input2 = tf.Variable(tf.random_uniform([3]))  
output = tf.add_n([input1, input2])  
  
with tf.Session() as sess:  
    sess.run(tf.initialize_all_variables())  
    print (sess.run(input1 + input2))  
    print (sess.run(output))

输出:

[ 1.30945706  2.29760814  3.81558323]
[ 1.30945706  2.29760814  3.81558323]

tf.add(x,y,name=None)

x:a tensor musut be one of                           the following types: halffloat32float64uint8int8int16int32int64complex64complex128string.  

y: A Tensor. Must have the same type as x.

name: A name for the operation (optional).

按照TensorFlow2.11的写法修改这段代码:“class tgcnCell(RNN): """Temporal Graph Convolutional Network """ def call(self, inputs, **kwargs): pass def __init__(self, num_units, adj, num_nodes, input_size=None, act=tf.nn.tanh, reuse=None): super(tgcnCell, self).__init__(units=num_units,_reuse=reuse) self._act = act self._nodes = num_nodes self._units = num_units self._adj = [] self._adj.append(calculate_laplacian(adj)) @property def state_size(self): return self._nodes * self._units @property def output_size(self): return self._units def __call__(self, inputs, state, scope=None): with tf.variable_scope(scope or "tgcn"): with tf.variable_scope("gates"): value = tf.nn.sigmoid( self._gc(inputs, state, 2 * self._units, bias=1.0, scope=scope)) r, u = tf.split(value=value, num_or_size_splits=2, axis=1) with tf.variable_scope("candidate"): r_state = r * state c = self._act(self._gc(inputs, r_state, self._units, scope=scope)) new_h = u * state + (1 - u) * c return new_h, new_h def _gc(self, inputs, state, output_size, bias=0.0, scope=None): inputs = tf.expand_dims(inputs, 2) state = tf.reshape(state, (-1, self._nodes, self._units)) x_s = tf.concat([inputs, state], axis=2) input_size = x_s.get_shape()[2].value x0 = tf.transpose(x_s, perm=[1, 2, 0]) x0 = tf.reshape(x0, shape=[self._nodes, -1]) scope = tf.get_variable_scope() with tf.variable_scope(scope): for m in self._adj: x1 = tf.sparse_tensor_dense_matmul(m, x0) x = tf.reshape(x1, shape=[self._nodes, input_size,-1]) x = tf.transpose(x,perm=[2,0,1]) x = tf.reshape(x, shape=[-1, input_size]) weights = tf.get_variable( 'weights', [input_size, output_size], initializer=tf.contrib.layers.xavier_initializer()) x = tf.matmul(x, weights) # (batch_size * self._nodes, output_size) biases = tf.get_variable( "biases", [output_size], initializer=tf.constant_initializer(bias, dtype=tf.float32)) x = tf.nn.bias_add(x, biases) x = tf.reshape(x, shape=[-1, self._nodes, output_size]) x = tf.reshape(x, shape=[-1, self._nodes * output_size]) return x”
最新发布
04-05
帮我整段修改一下,改成TensorFlow2.11版本可用的:“ def TGCN(_X, _weights, _biases): ### cell_1 = tgcnCell(cell=custom_cell,gru_units=gru_units, adj=adj, num_nodes=num_nodes) cell = tf.nn.rnn_cell.MultiRNNCell([cell_1], state_is_tuple=True) _X = tf.unstack(_X, axis=1) outputs, states = tf.nn.static_rnn(cell, _X, dtype=tf.float32) m = [] for i in outputs: o = tf.reshape(i,shape=[-1,num_nodes,gru_units]) o = tf.reshape(o,shape=[-1,gru_units]) m.append(o) last_output = m[-1] output = tf.matmul(last_output, _weights['out']) + _biases['out'] output = tf.reshape(output,shape=[-1,num_nodes,pre_len]) output = tf.transpose(output, perm=[0,2,1]) output = tf.reshape(output, shape=[-1,num_nodes]) return output, m, states ###### placeholders ###### # 使用 tf.placeholder inputs = tf.compat.v1.placeholder(tf.float32, shape=[None, seq_len, num_nodes]) labels = tf.compat.v1.placeholder(tf.float32, shape=[None, pre_len, num_nodes]) # Graph weights weights = { 'out': tf.Variable(tf.random.normal([gru_units, pre_len], mean=1.0), name='weight_o')} biases = { 'out': tf.random.normal(shape=[pre_len],name='bias_o')} if model_name == 'tgcn': pred,ttts,ttto = TGCN(inputs, weights, biases) y_pred = pred ###### optimizer ###### lambda_loss = 0.0015 Lreg = lambda_loss * sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()) label = tf.reshape(labels, [-1,num_nodes]) ##loss loss = tf.reduce_mean(tf.nn.l2_loss(y_pred-label) + Lreg) ##rmse error = tf.sqrt(tf.reduce_mean(tf.square(y_pred-label))) optimizer = tf.train.AdamOptimizer(lr).minimize(loss) ###### Initialize session ###### variables = tf.global_variables() saver = tf.train.Saver(tf.global_variables()) #sess = tf.Session() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) sess.run(tf.global_variables_initializer())”
04-05
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值