adaboost训练
穿越5极限
主要研究计算机视觉和机器学习
展开
-
Adaboost训练过程的详解
Adaboost 总结 1、 概述 Adaboost简单来说就是将多个分类器整合成一个分类器,是boosting的扩展和延续。是一种迭代算法,在每一轮加入一个新的弱分类器,直到达到某个预定的足够小的错误率,最后得到一个由多个弱分类器组成的强分类器。每一个样本在训练时都被赋予一个权值,表明它被某个分类器选入训练集的概率。如果某个样本点已经被正确分类,那么在构造下一个训练集时,它的相应的权原创 2015-10-13 22:04:56 · 2870 阅读 · 0 评论 -
Adaboost 训练详解
Adaboost 总结 1、 概述 Adaboost简单来说就是将多个分类器整合成一个分类器,是boosting的扩展和延续。是一种迭代算法,在每一轮加入一个新的弱分类器,直到达到某个预定的足够小的错误率,最后得到一个由多个弱分类器组成的强分类器。每一个样本在训练时都被赋予一个权值,表明它被某个分类器选入训练集的概率。如果某个样本点已经被正确分类,那么在构造下一个训练集时,它的相应的权原创 2016-08-12 15:16:31 · 2338 阅读 · 0 评论