死磕带通滤波器

带通滤波器的作用

与陷波器类似,带通滤波器在数字电源控制领域有重要作用。比如在三相LCL逆变器的谐振抑制控制方面,通过带通滤波器可以提取谐振点附近的频谱做进一步的控制策略。在有源电力滤波器利用带通滤波器可以提取电网信号的基波频率从而做进一步的控制。

带通滤波器传递函数

带通滤波器的传递函数是:
h ( s ) = A w o B s s 2 + B s + w o 2 h(s)=\frac{Aw_oBs}{s^2+Bs+w_o^2} h(s)=s2+Bs+wo2AwoBs
其中, w o w_o wo 是带通的“中心频率”,也就是想要通过频率的中心点频率。 B B B是带通的频宽比,注意此处频宽比是一个相对于中心频率的比例,比如:
w o = 50 ∗ 2 ∗ p i w_o=50*2*pi wo=502pi
B = 0.2 B=0.2 B=0.2
表达的意义是设定中心频率为50Hz,带通的带宽为50*0.2=10Hz。

带通滤波器的伯德图

设定“中心频率”为50Hz,频宽比为0.4。用matlab绘制伯德图,如下:
带通滤波器的幅频特性
可见,仅仅在50Hz附近有大于0的增益,其他频率点都被抑制了。于是就有了“带通”的效果。

离散化

上述都是在连续域中分析的,但是对于数字控制应用,它是无法落地实现的,所以我们需要对连续域模型进行离散化分析。

Z变换

利用Z变换可以离散化。也可以利用matlab对S函数进行Z变换,选定离散时间Ts=0.0002,则其Z变换如下:
F ( z ) = 0.0012557 z − 0.0012557 z 2 − 1.996 z + 0.999920 F(z)=\frac{0.0012557z-0.0012557}{z^2-1.996z+0.999920} F(z)=z21.996z+0.9999200.0012557z0.0012557

差分方程

z变换后很自然能得到差分方程,只需要对分子分母除以 z z z的最高次幂:
Y X = 0.0012557 X k − 1 − 0.0012557 X k − 2 1 − 1.996 X k − 1 + 0.999920 X k − 2 \frac{Y}{X}=\frac{0.0012557X_{k-1}-0.0012557X_{k-2}}{1-1.996X_{k-1}+0.999920X_{k-2}} XY=11.996Xk1+0.999920Xk20.0012557Xk10.0012557Xk2
有了差分方程,程序的实现可以落到实地。在Matlab的m文件中编写matlab function为例说明:

function Y = BandFilter(X)
%#codegen
%% 中间变量定义及初始化
Num0 = 0;
Num1 = 0.0012557;
Num2 = -0.0012557;

Den0 = 1;
Den1 = -1.996;
Den2 = 0.999920;

persistent Xk_1; %1次的输入
persistent Xk_2; %2次的输入

persistent Yk_1; %1次的输出
persistent Yk_2; %2次的输出

if isempty(Xk_1)   Xk_1 = 0;
end
if isempty(Xk_2)   Xk_2 = 0;
end
if isempty(Yk_1)   Yk_1 = 0;
end
if isempty(Yk_2)   Yk_2 = 0;
end
%% 执行计算
Temp = Num0*X + Num1*Xk_1 + Num2*Xk_2 - (Den1*Yk_1 + Den2*Yk_2);
Y = Temp/Den0;
Xk_2 = Xk_1;
Xk_1 = X;
Yk_2 = Yk_1;
Yk_1 = Y;

Simulink仿真

利用Sum模块将50Hz、1Hz、500Hz正弦信号,以及直线信号、随机信号,这5个信号相加,得到一组带有谐波的信号注入到带通滤波器,结构图如下所示:
带通滤波器的Simulink仿真
从仿真结果可以看到:滤波后,除了50Hz的波形被保留下来,其他波形都被滤除了。可见,带通滤波器在杂波信号中获取指定次的谐波有较好的效果。
在这里插入图片描述

参考文献

二阶滤波器的标准传递函数

在MATLAB中,你可以按照以下步骤来实现高斯白噪声通过1000Hz到3000Hz的带通滤波器并绘制其滤波后的功率谱: 1. **生成高斯白噪声**: 使用`awgn`函数创建一段白噪声,假设你想生成长度为N的信号: ```matlab N = 1e5; % 选择一个足够长的信号长度 snr = 20; % 设定信噪比 white_noise = awgn(zeros(1, N), snr, 'measured'); ``` 2. **设计带通滤波器**: 使用`fir1`或`designfilt`函数设计一个低通原型滤波器,然后通过`freqz`函数查看滤波器的频率响应。根据需要将滤波器从低通转换为带通形式,例如: ```matlab fc = [1000 3000]; % 带通滤波器的中心频率范围 bw = fc(2) - fc(1); % 带宽 filter_order = 64; % 滤波器阶数 bpfilt = designfilt('bandpassiir', 'FilterOrder', filter_order, 'HalfPowerFrequency', [fc(1) fc(2)], 'StopBandAttenuation', 60); ``` 3. **应用滤波器**: 使用`filter`函数对噪声信号进行滤波: ```matlab filtered_data = filter(bpfilt.num, bpfilt.den, white_noise); ``` 4. **计算功率谱**: 对滤波后的信号,使用`pwelch`函数(更精确地计算功率谱)或`fft`(快速傅立叶变换): ```matlab pw Spectrum = pwelch(filtered_data, [],[],[],Fs); % Fs是你样本率,若不清楚可以先用length(white_noise)/length(filtered_data) freq_axis = linspace(0, Fs/2, length(pw Spectrum)); % 创建频率轴 ``` 5. **绘制功率谱图**: 最后,使用`plot`函数绘制滤波后的功率谱: ```matlab plot(freq_axis, 10*log10(abs(pw Spectrum)), 'b', 'LineWidth', 2); xlabel('Frequency (Hz)'); ylabel('Power Spectral Density (dBFS)'); title('Filtered White Noise Power Spectrum'); ```
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值