denoiser降噪实例

github地址

降噪代码

import torch
import torchaudio
from denoiser import pretrained
from denoiser.dsp import convert_audio
import soundfile

model = pretrained.dns64().cpu()  # .cuda()

# 加载原文件
wav, sr = torchaudio.load('../../dataset/alex_noisy.mp3')
# wav, sr = torchaudio.load('after_5.wav')

# 处理
wav = convert_audio(wav.cpu(), sr, model.sample_rate, model.chin)  # .cuda()
with torch.no_grad():
    denoised = model(wav[None])[0]

# 保存
soundfile.write('after_alex_noisy.wav', denoised.data.cpu().numpy().T, sr)  # numpy格式数据保存音频
torchaudio.save('after_alex_noisy.wav', denoised, sr)  # tensor格式数据保存音频

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值