这题需要注意的是对于回溯的关注,正常写法如下:
count -= cur->left->val; // 递归,处理节点;
if (traversal(cur->left, count)) return true;
count += cur->left->val; // 回溯,撤销处理结果
这里将回溯的逻辑详细的写出来了,但由于在传参数的时候可以传 count - cur->left->val,这样的写法不会改变当前层(节点) 的count值,所以回溯到当前节点进行另一子树的递归时,可以保证当前回溯到该节点的count的正确性。这样写就隐藏了回溯的逻辑,以前写都没有注意这点,以后写之前需要思考一下回溯的问题。
class Solution {
private:
bool traversal(TreeNode* cur, int count) {
if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回
if (cur->left) { // 左
count -= cur->left->val; // 递归,处理节点;
if (traversal(cur->left, count)) return true;
count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
count -= cur->right->val; // 递归,处理节点;
if (traversal(cur->right, count)) return true;
count += cur->right->val; // 回溯,撤销处理结果
}
return false;
}
public:
bool hasPathSum(TreeNode* root, int sum) {
if (root == NULL) return false;
return traversal(root, sum - root->val);
}
};
递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:
- 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
- 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先 (opens new window)中介绍)
- 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)
这题就是递归函数不需要返回值的题型。
这题的要求是找所有符合条件的路径,所以不能碰到符合条件的就直接返回,还需要继续搜索。
class Solution {
public:
vector<vector<int>> ans;
vector<int> path;
void traversal(TreeNode* cur, int targetSum) {
// 当到达叶子节点时,检查是否满足路径和条件
if (!cur->left && !cur->right) {
if(targetSum == cur->val){
path.push_back(cur->val);
ans.push_back(path);
path.pop_back();
}
return;
}
// 递归检查左右子树
if (cur->left) {
path.push_back(cur->val);
traversal(cur->left, targetSum - cur->val);
path.pop_back();
}
if (cur->right) {
path.push_back(cur->val);
traversal(cur->right, targetSum - cur->val);
path.pop_back();
}
return;
}
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
ans.clear();
path.clear();
if (root == NULL) return ans;
traversal(root, targetSum);
return ans;
}
};
这里可以发现在递归函数中,在所有的条件分支中,都有push和pop的操作,我们可以把这个操作提出来。写成以下形式
class Solution {
public:
vector<vector<int>> ans;
vector<int> path;
void traversal(TreeNode* cur, int targetSum) {
path.push_back(cur->val);
// 当到达叶子节点时,检查是否满足路径和条件
if (!cur->left && !cur->right) {
if(targetSum == cur->val){
ans.push_back(path);
}
}
else{
// 递归检查左右子树
if (cur->left) {
traversal(cur->left, targetSum - cur->val);
}
if (cur->right) {
traversal(cur->right, targetSum - cur->val);
}
}
path.pop_back();
}
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
ans.clear();
path.clear();
if (root == NULL) return ans;
//path.push_back(root->val); // 把根节点放进路径
traversal(root, targetSum);
return ans;
}
};
106.从中序与后序遍历序列构造二叉树
这题重点有两个:
1、怎么从中序,后序序列中找到根节点,并将中序,后续序列划分为左子树部分,右子树部分和根,再对左右子树部分的序列找子树的根和左右子树,这里体现了分治的思想。
2、怎么建立一颗二叉树,以下是建立二叉树的代码,之前写的都是遍历二叉树,还没创建过,导致不会处理建立二叉树的递归。
TreeNode* creatTreeNode(TreeNode* root, int val)
{
if (root == nullptr)
{
root = new TreeNode();
root->val = val;
return root;
}
if (val < root->val)
{
root->left = creatTreeNode(root->left, val);
}
else if (val > root->val)
{
root->right = creatTreeNode(root->right,val);
}
return root;
}
以下是整体思路:
-
第一步:如果数组大小为零的话,说明是空节点了。
-
第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
-
第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
-
第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
-
第五步:切割后序数组,切成后序左数组和后序右数组
-
第六步:递归处理左区间和右区间
整体框架可写成如下形式:
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
// 第一步
if (postorder.size() == 0) return NULL;
// 第二步:后序遍历数组最后一个元素,就是当前的中间节点
int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);
// 叶子节点
if (postorder.size() == 1) return root;
// 第三步:找切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 第四步:切割中序数组,得到 中序左数组和中序右数组
// 第五步:切割后序数组,得到 后序左数组和后序右数组
// 第六步
root->left = traversal(中序左数组, 后序左数组);
root->right = traversal(中序右数组, 后序右数组);
return root;
}
完整代码如下:
class Solution {
private:
// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
if (postorderBegin == postorderEnd) return NULL;
int rootValue = postorder[postorderEnd - 1];
TreeNode* root = new TreeNode(rootValue);
if (postorderEnd - postorderBegin == 1) return root;
int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;
// 切割后序数组
// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
int leftPostorderBegin = postorderBegin;
int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, postorder, leftPostorderBegin, leftPostorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
// 左闭右开的原则
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}
};