树状数组(Garlands,codeforces 707e)

看了别人的代码写的。

不是官方解法。

所以速度比较慢。

把STL和结构体都去掉后才勉强过。

而且还钻了题目的空子。

在多达10^5个询问中,ASK却不会超过2000个。

因此这种解法才可行。

否则空间都开不下。

但比官方解法编程难度低。

离线算法。

用了二维树状数组。


#include<stdio.h>
#define maxn 2010
#define maxq 1000010
typedef long long ll;

int n,m,k,q,cnt;

ll tree[maxn][maxn];
ll ans[maxn][maxn];
int x[maxn][maxn];
int y[maxn][maxn];
int w[maxn][maxn];
int l[maxn];
bool st[maxn];
char ch[maxq];
int bh[maxq];
int x1[maxn];
int y1[maxn];
int x2[maxn];
int y2[maxn];
int id[maxq];
void add(int x,int y,int val)
{
    for(int i=x;i<=n;i+=i&(-i))
        for(int j=y;j<=m;j+=j&(-j))
            tree[i][j]+=val;
}

ll qry(int x,int y)
{
    ll ret=0;
    for(int i=x;i;i-=i&(-i))
        for(int j=y;j;j-=j&(-j))
            ret+=tree[i][j];
    return ret;
}

int main()
{
    scanf("%d %d %d",&n,&m,&k);
    for(int i=1;i<=k;i++)
    {
        scanf("%d",&l[i]);
        for(int j=1;j<=l[i];j++)
            scanf("%d %d %d",&x[i][j],&y[i][j],&w[i][j]);
    }
    char str[100];
    scanf("%d",&q);
    for(int i=1;i<=q;i++)
    {
        scanf("%s",str);
        ch[i]=str[0];
        if(ch[i]=='A')
        {
            id[i]=++cnt;
            scanf("%d %d %d %d",&x1[cnt],&y1[cnt],&x2[cnt],&y2[cnt]);
        }
        else scanf("%d",&bh[i]);
    }
    for(int i=1;i<=k;i++)
    {
        for(int j=1;j<=l[i];j++) add(x[i][j],y[i][j],w[i][j]);
        for(int j=1;j<=cnt;j++) ans[i][j]=qry(x2[j],y2[j])-qry(x1[j]-1,y2[j])-qry(x2[j],y1[j]-1)+qry(x1[j]-1,y1[j]-1);
        for(int j=1;j<=l[i];j++) add(x[i][j],y[i][j],-w[i][j]);
    }
    for(int i=1;i<=q;i++)
    {
        if(ch[i]=='A')
        {
            ll ANS=0;
            for(int j=1;j<=k;j++)
                if(!st[j])
                    ANS+=ans[j][id[i]];
            printf("%I64d\n",ANS);
        }
        else st[bh[i]]^=1;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值