正弦定理
a
sin
A
=
b
sin
B
=
c
sin
C
=
2
R
,
2
R
是该三角形外接圆的直径。
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R,2R是该三角形外接圆的直径。
sinAa=sinBb=sinCc=2R,2R是该三角形外接圆的直径。
推导过程
既然和外接圆有关,那推导的时候也要从外接圆入手。
直径所对圆周角是直角,由上图可知, ∠ A B E = 9 0 ο 而 ∠ C = ∠ E ,则 sin C = sin E = c 2 R 即 c sin C = 2 R ,其余同理 直径所对圆周角是直角,由上图可知,\angle ABE= 90^{\operatorname{\omicron}} \\ 而\angle C=\angle E,则\sin C=\sin E=\frac{c}{2R} \\ 即\frac{c}{\sin C}=2R,其余同理 直径所对圆周角是直角,由上图可知,∠ABE=90ο而∠C=∠E,则sinC=sinE=2Rc即sinCc=2R,其余同理