绪论
高等数学核心内容:微积分
微积分:微分(导数)+积分
上册:一元微积分
下册:多元微积分
微积分主要研究事物运动中的数量变化规律。
两种变化:
- 均匀变化:中学
- 非均匀变化
两个侧面:
- 微观:导数(变化率)
- 宏观(整体):积分(改变量)
微积分主要研究对象:函数y=f(x)的变化规律。
导数和积分分别是处理均匀量的商和积在处理非均匀量中的发展。
发展的规律:极限思想。
初等数学:常量,具体的。高等数学:变量,抽象的。
第一章 函数与极限
函数的定义与性质
函数是实数集到实数集的映射。
函数两要素:定义域、对应法则,可用于判断是否为同一函数。
函数的几种特性:
{
有界性:有界的充分必要条件是既有上界又有下界
单调性:通常利用单调性的定义和一阶导数的正负来判定
奇偶性
周期性:
f
(
x
+
T
)
=
f
(
x
)
,
T
>
0
,并非每个函数都有最小正周期
补充
:
f
(
x
)
和
g
(
x
)
的周期是
T
,则
f
(
x
)
±
g
(
x
)
的周期也是
T
f
(
x
)
的周期是
T
1
,
g
(
x
)
的周期是
T
2
,则
f
(
x
)
±
g
(
x
)
的周期是
T
1
和
T
2
的最小公倍数
函数有界,不能是
5
和
−
3
使它有界,而是一个数
m
,使得
−
m
⩽
f
(
x
)
⩽
m
,才叫有界。
直接函数与反函数关于
f
(
x
)
=
x
对称(如何证明?可取某一点来研究)
当
x
和
y
是一一对应的关系时,才有反函数,例如
y
=
x
2
就没有反函数
分段函数
:
[
x
]
表示不超过
x
的最大整数
符号函数:
y
=
s
g
n
x
=
{
−
1
,
x
<
0
0
,
x
=
0
1
,
x
>
0
,
∣
x
∣
s
g
n
x
=
x
函数定义域
:
复合函数:内函数值域
∩
外函数定义域
≠
∅
函数的四则运算:定义域为交集,当为除法时要求分母
≠
0
函数是实数集到实数集的映射。\\ 函数两要素:定义域、对应法则,可用于判断是否为同一函数。\\ 函数的几种特性:\\ \begin{cases} 有界性:有界的充分必要条件是既有上界又有下界 \\ 单调性:通常利用单调性的定义和一阶导数的正负来判定 \\ 奇偶性 \\ 周期性:f(x+T)=f(x),T>0,并非每个函数都有最小正周期 \\ \end{cases}\\\ \,\\ \textbf{补充}:\\ f(x)和g(x)的周期是T,则f(x)\pm g(x)的周期也是T \\ f(x)的周期是T_1,g(x)的周期是T_2,则f(x)\pm g(x)的周期是T_1和T_2的最小公倍数 \\ 函数有界,不能是5和-3使它有界,而是一个数m,使得-m\leqslant f(x) \leqslant m,才叫有界。\\ 直接函数与反函数关于f(x)=x对称(如何证明?可取某一点来研究)\\ 当x和y是一一对应的关系时,才有反函数,例如y=x^2就没有反函数 \\ \,\\ \textbf{分段函数}:\\ [x]表示不超过x的最大整数 \\ 符号函数:y=sgnx= \begin{cases} -1,x<0\\ 0,x=0\\ 1,x>0 \end{cases} ,|x|sgnx=x \\ \,\\ \textbf{函数定义域}:\\ 复合函数:内函数值域\cap外函数定义域\ne\varnothing \\ 函数的四则运算:定义域为交集,当为除法时要求分母\ne0 \\
函数是实数集到实数集的映射。函数两要素:定义域、对应法则,可用于判断是否为同一函数。函数的几种特性:⎩
⎨
⎧有界性:有界的充分必要条件是既有上界又有下界单调性:通常利用单调性的定义和一阶导数的正负来判定奇偶性周期性:f(x+T)=f(x),T>0,并非每个函数都有最小正周期 补充:f(x)和g(x)的周期是T,则f(x)±g(x)的周期也是Tf(x)的周期是T1,g(x)的周期是T2,则f(x)±g(x)的周期是T1和T2的最小公倍数函数有界,不能是5和−3使它有界,而是一个数m,使得−m⩽f(x)⩽m,才叫有界。直接函数与反函数关于f(x)=x对称(如何证明?可取某一点来研究)当x和y是一一对应的关系时,才有反函数,例如y=x2就没有反函数分段函数:[x]表示不超过x的最大整数符号函数:y=sgnx=⎩
⎨
⎧−1,x<00,x=01,x>0,∣x∣sgnx=x函数定义域:复合函数:内函数值域∩外函数定义域=∅函数的四则运算:定义域为交集,当为除法时要求分母=0
例题
:
(
1
)判断
f
(
x
)
=
x
+
3
x
2
+
1
是否有界
∣
f
(
x
)
∣
=
∣
x
+
3
x
2
+
1
∣
≤
∣
x
∣
x
2
+
1
+
3
x
2
+
1
≤
1
2
+
3
,因此有界
此处重点探究为什么
∣
x
∣
x
2
+
1
≤
1
2
,其本质是要找出最大值,这里直接求导吧
(
2
)证明
f
(
x
)
=
x
sin
x
是无界函数
f
(
2
k
π
+
π
2
)
=
2
k
π
+
π
2
,因此无界
.
类似地,
∣
x
sin
x
∣
e
cos
x
也是无界函数
\textbf{例题}:\\ (1)判断f(x)=\frac{x+3}{x^2+1}是否有界 \\ |f(x)|=|\frac{x+3}{x^2+1}|\le \frac{|x|}{x^2+1}+\frac{3}{x^2+1}\le\frac{1}{2}+3,因此有界 \\ 此处重点探究为什么\frac{|x|}{x^2+1}\le \frac{1}{2},其本质是要找出最大值,这里直接求导吧 \\ \,\\ (2)证明f(x)=x\sin x是无界函数 \\ f(2k\pi+\frac{\pi}{2})=2k\pi+\frac{\pi}{2},因此无界. 类似地,|x\sin x|e^{\cos x}也是无界函数
例题:(1)判断f(x)=x2+1x+3是否有界∣f(x)∣=∣x2+1x+3∣≤x2+1∣x∣+x2+13≤21+3,因此有界此处重点探究为什么x2+1∣x∣≤21,其本质是要找出最大值,这里直接求导吧(2)证明f(x)=xsinx是无界函数f(2kπ+2π)=2kπ+2π,因此无界.类似地,∣xsinx∣ecosx也是无界函数
关于数列极限
数列极限问题的引出:求圆的面积时,圆的内接正
n
边形面积组成的数列。
数列可看作自变量为正整数的函数。
数列极限的定义:
lim
n
→
∞
x
n
=
a
⇔
∀
ε
>
0
,
∃
正整数
N
,当
n
>
N
时,有
∣
x
n
−
a
∣
<
ε
正整数
N
是与任意给定的正数
ε
有关的,它随着
ε
的选定而选定
ε
用来刻画
x
n
与
a
的接近程度,
N
用来刻画
n
→
∞
这个极限过程
定理:
lim
n
→
∞
x
n
=
a
的充分必要条件是
lim
n
→
∞
x
2
n
−
1
=
lim
n
→
∞
x
2
n
=
a
如何证明某个数
a
是数列
x
n
的极限?
利用数列定义,重要的是对于
∀
的正数
ε
,要能够指出正整数
N
的存在
数列极限问题的引出:求圆的面积时,圆的内接正n边形面积组成的数列。\\ 数列可看作自变量为正整数的函数。\\ \,\\ 数列极限的定义:\lim_{n \to \infty}x_n=a\Leftrightarrow\forall\varepsilon>0,\exists正整数N,当n>N时,有|x_n-a|<\varepsilon \\正整数N是与任意给定的正数\varepsilon有关的,它随着\varepsilon的选定而选定 \\ \varepsilon用来刻画x_n与a的接近程度,N用来刻画n \to \infty这个极限过程 \\ 定理:\lim_{n \to \infty}x_n=a的充分必要条件是\lim_{n \to \infty}x_{2n-1}=\lim_{n \to \infty}x_{2n}=a \\ 如何证明某个数a是数列x_n的极限?\\利用数列定义,重要的是对于\forall的正数\varepsilon,要能够指出正整数N的存在
数列极限问题的引出:求圆的面积时,圆的内接正n边形面积组成的数列。数列可看作自变量为正整数的函数。数列极限的定义:n→∞limxn=a⇔∀ε>0,∃正整数N,当n>N时,有∣xn−a∣<ε正整数N是与任意给定的正数ε有关的,它随着ε的选定而选定ε用来刻画xn与a的接近程度,N用来刻画n→∞这个极限过程定理:n→∞limxn=a的充分必要条件是n→∞limx2n−1=n→∞limx2n=a如何证明某个数a是数列xn的极限?利用数列定义,重要的是对于∀的正数ε,要能够指出正整数N的存在
例题:
(
1
)若
lim
n
→
∞
x
n
=
a
,则
lim
n
→
∞
∣
x
n
∣
=
∣
a
∣
,但反之不成立
∀
ε
>
0
,
∃
正整数
N
,当
n
>
N
时,有
∣
x
n
−
a
∣
<
ε
而
∣
∣
x
n
∣
−
∣
a
∣
∣
≤
∣
x
n
−
a
∣
<
ε
(当
x
n
和
a
同号
∣
x
n
∣
到
∣
a
∣
的距离
=
x
n
到
a
的距离,异号时则
x
n
到
a
的距离更大),
因此有如下结论:
∀
ε
>
0
,
∃
正整数
N
,当
n
>
N
时,有
∣
∣
x
n
∣
−
∣
a
∣
∣
<
ε
,即
lim
n
→
∞
∣
x
n
∣
=
∣
a
∣
反例:
x
n
=
(
−
1
)
n
(
2
)求
lim
n
→
∞
[
1
1
×
2
+
1
2
×
3
+
⋅
⋅
⋅
+
1
n
×
(
n
+
1
)
]
n
思路:
1
1
×
2
=
1
−
1
2
例题:\\ (1)若\lim_{n \to \infty}x_n=a,则\lim_{n \to \infty}|x_n|=|a|,但反之不成立 \\ \forall\varepsilon>0,\exists正整数N,当n>N时,有|x_n-a|<\varepsilon \\ 而||x_n|-|a||\le|x_n-a|<\varepsilon (当x_n和a同号|x_n|到|a|的距离=x_n到a的距离,异号时则x_n到a的距离更大),\\ 因此有如下结论:\\ \forall\varepsilon>0,\exists正整数N,当n>N时,有||x_n|-|a||<\varepsilon,即\lim_{n \to \infty}|x_n|=|a| \\ 反例:x_n=(-1)^n \\ \,\\ (2)求\lim_{n \to \infty}[\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\cdot\cdot\cdot+\frac{1}{n \times (n+1)}]^n \\ 思路:\frac{1}{1 \times 2}=1-\frac{1}{2}
例题:(1)若n→∞limxn=a,则n→∞lim∣xn∣=∣a∣,但反之不成立∀ε>0,∃正整数N,当n>N时,有∣xn−a∣<ε而∣∣xn∣−∣a∣∣≤∣xn−a∣<ε(当xn和a同号∣xn∣到∣a∣的距离=xn到a的距离,异号时则xn到a的距离更大),因此有如下结论:∀ε>0,∃正整数N,当n>N时,有∣∣xn∣−∣a∣∣<ε,即n→∞lim∣xn∣=∣a∣反例:xn=(−1)n(2)求n→∞lim[1×21+2×31+⋅⋅⋅+n×(n+1)1]n思路:1×21=1−21
关于函数的极限
( 1 )自变量趋于有限值时函数的极限: 定义: lim x → x 0 f ( x ) = A ⇔ ∀ ε > 0 , ∃ δ > 0 ,当 0 < ∣ x − x 0 ∣ < δ ,有 ∣ f ( x ) − A ∣ < ε x → x 0 时 f ( x ) 有无极限,与 f ( x ) 在点 x 0 是否有定义并无关系 单侧极限(左极限或右极限): f ( x ) 在 x → x 0 时极限存在的充分必要条件是左右极限各自存在且相等 ( 2 )自变量趋于无穷大时函数的极限定义: lim x → ∞ f ( x ) = A ⇔ ∀ ε > 0 , ∃ X > 0 ,当 ∣ x ∣ > X 时,有 ∣ f ( x ) − A ∣ < ε lim x → + ∞ f ( x ) = A ⇔ ∀ ε > 0 , ∃ X > 0 ,当 x > X 时,有 ∣ f ( x ) − A ∣ < ε lim x → − ∞ f ( x ) = A ⇔ ∀ ε > 0 , ∃ X > 0 ,当 x < − X 时,有 ∣ f ( x ) − A ∣ < ε 定理: lim x → ∞ f ( x ) = A 的充分必要条件是 lim x → + ∞ f ( x ) = lim x → − ∞ f ( x ) = A ( 3 )需要分左右极限求极限的问题: { 分段函数 e ∞ 型 arctan ∞ 型 ( 4 )例题 ( a )求 lim x → 0 ( 2 + e 1 x 1 + e 4 x + sin x ∣ x ∣ ) (1)自变量趋于有限值时函数的极限:\\ 定义:\lim_{x \to x_0}f(x)=A\Leftrightarrow\forall\varepsilon>0,\exists\delta>0,当0<|x-x_0|<\delta,有|f(x)-A|<\varepsilon \\x \to x_0时f(x)有无极限,与f(x)在点x_0是否有定义并无关系 \\ 单侧极限(左极限或右极限):\\ f(x)在x \to x_0时极限存在的充分必要条件是左右极限各自存在且相等 \\ \,\\ (2)自变量趋于无穷大时函数的极限 定义:\\ \lim_{x \to \infty}f(x)=A\Leftrightarrow\forall\varepsilon>0,\exists X>0,当|x|>X时,有|f(x)-A|<\varepsilon \\ \lim_{x \to +\infty}f(x)=A\Leftrightarrow\forall\varepsilon>0,\exists X>0,当x>X时,有|f(x)-A|<\varepsilon \\ \lim_{x \to -\infty}f(x)=A\Leftrightarrow\forall\varepsilon>0,\exists X>0,当x<-X时,有|f(x)-A|<\varepsilon \\ 定理:\lim_{x \to \infty}f(x)=A的充分必要条件是\lim_{x \to +\infty}f(x)=\lim_{x \to -\infty}f(x)=A \\ \,\\ (3)需要分左右极限求极限的问题:\\ \begin{cases} 分段函数 \\ e^{\infty}型 \\ \arctan \infty型 \end{cases} \\ \,\\ (4)例题 \\ (a)求\lim_{x \to 0}(\frac{2+e^{\frac{1}{x}}}{1+e^{\frac{4}{x}}}+\frac{\sin x}{|x|}) (1)自变量趋于有限值时函数的极限:定义:x→x0limf(x)=A⇔∀ε>0,∃δ>0,当0<∣x−x0∣<δ,有∣f(x)−A∣<εx→x0时f(x)有无极限,与f(x)在点x0是否有定义并无关系单侧极限(左极限或右极限):f(x)在x→x0时极限存在的充分必要条件是左右极限各自存在且相等(2)自变量趋于无穷大时函数的极限定义:x→∞limf(x)=A⇔∀ε>0,∃X>0,当∣x∣>X时,有∣f(x)−A∣<εx→+∞limf(x)=A⇔∀ε>0,∃X>0,当x>X时,有∣f(x)−A∣<εx→−∞limf(x)=A⇔∀ε>0,∃X>0,当x<−X时,有∣f(x)−A∣<ε定理:x→∞limf(x)=A的充分必要条件是x→+∞limf(x)=x→−∞limf(x)=A(3)需要分左右极限求极限的问题:⎩ ⎨ ⎧分段函数e∞型arctan∞型(4)例题(a)求x→0lim(1+ex42+ex1+∣x∣sinx)
关于函数或数列极限的性质
收敛数列性质: { 唯一性 有界性:收敛一定有界,有界不一定收敛,无界一定发散,发散不一定无界 保号性: { 设 lim n → ∞ x n = A ,则当 A > 0 ,存在 N > 0 当 n > N 时, x n > 0 如果存在 N > 0 当 n > N 时, x n ≥ 0 (或 x n > 0 ,如 lim n → ∞ 1 n ),则 A ≥ 0 子数列:也收敛,且极限也是 a 函数极限的性质: { 唯一性 局部有界性:若 lim x → x 0 存在,则 f ( x ) 在 x 0 某去心邻域有界;有界不一定有极限 局部保号性:在 x 0 某去心邻域具有和收敛数列类似的保号性 函数极限与数列极限的关系:海因定理 收敛数列性质:\\ \begin{cases} 唯一性 \\ 有界性:收敛一定有界,有界不一定收敛,无界一定发散,发散不一定无界 \\ 保号性: \begin{cases} 设\lim_{n \to \infty}x_n=A,则当A>0,存在N>0当n>N时,x_n>0 \\ 如果存在N>0当n>N时,x_n \ge 0(或x_n>0,如\lim_{n \to \infty} \frac{1}{n}),则A \ge 0 \end{cases} \\ 子数列:也收敛,且极限也是a \\ \end{cases} \\ 函数极限的性质:\\ \begin{cases} 唯一性 \\ 局部有界性:若\lim_{x \to x_0}存在,则f(x)在x_0某去心邻域有界;有界不一定有极限 \\ 局部保号性:在x_0某去心邻域具有和收敛数列类似的保号性 \\ 函数极限与数列极限的关系:海因定理 \\ \end{cases} 收敛数列性质:⎩ ⎨ ⎧唯一性有界性:收敛一定有界,有界不一定收敛,无界一定发散,发散不一定无界保号性:{设limn→∞xn=A,则当A>0,存在N>0当n>N时,xn>0如果存在N>0当n>N时,xn≥0(或xn>0,如limn→∞n1),则A≥0子数列:也收敛,且极限也是a函数极限的性质:⎩ ⎨ ⎧唯一性局部有界性:若limx→x0存在,则f(x)在x0某去心邻域有界;有界不一定有极限局部保号性:在x0某去心邻域具有和收敛数列类似的保号性函数极限与数列极限的关系:海因定理
关于无穷小量与无穷大量
无穷小的定义: 如果函数 f ( x ) 当 x → x 0 (或 x → ∞ )时的极限为 0 ,那么称函数 f ( x ) 为当 x → x 0 (或 x → ∞ )时的无穷小 无穷小是变量,而 0 是唯一可以作为无穷小的常数 无穷大的定义: 设函数 f ( x ) 在 x 0 的某一去心领域内有定义(或 ∣ x ∣ 大于某一正数时有定义),对于任意给定的正数 M (不论多大),总存在正数 δ (或正数 X ),只要 x 适合不等式 0 < ∣ x − x 0 ∣ < δ (或 ∣ x ∣ > X ),对应的函数值 f ( x ) 总满足不等式 ∣ f ( x ) ∣ > M ,那么称函数 f ( x ) 是当 x → x 0 (或 x → ∞ 时的无穷大) 无穷大也是变量,无穷大函数的极限是不存在的,但为了方便也可以说无穷大函数的极限是无穷大 注意:无穷小不是负无穷。 定理:无穷大的倒数是无穷小,无穷小(排除 f ( x ) = 0 )的倒数是无穷大 性质: 有限个无穷小的和、积仍是无穷小 无穷小量与有界量的积仍是无穷小 两个无穷大量的积仍是无穷大(一个正无穷大一个负无穷大,两个无穷大之和是 0 ) 无穷大与有界变量之和仍为无穷大 无穷大与非 0 常数乘积仍为无穷大 当 n → + ∞ , ln a n ≪ n b ≪ a n ≪ n ! ≪ n n 无穷大量与无界变量的关系: 无穷大量一定无界,无界不一定是无穷大量(如这样一个数列: 1 、 0 、 3 、 0 、 5 、 0 ⋅ ⋅ ⋅ ) 无穷小的定义:\\ 如果函数f(x)当x \to x_0(或x \to \infty)时的极限为0,那么称函数f(x)为当x \to x_0(或x \to \infty)时的无穷小\\无穷小是变量,而0是唯一可以作为无穷小的常数 \\ 无穷大的定义:\\ 设函数f(x)在x_0的某一去心领域内有定义(或|x|大于某一正数时有定义),对于任意给定的正数M(不论多大),总存在正数\delta(或正数X),只要x适合不等式0<|x-x_0|<\delta(或|x|>X),对应的函数值f(x)总满足不等式|f(x)|>M,那么称函数f(x)是当x \to x_0(或x \to \infty时的无穷大)\\ 无穷大也是变量,无穷大函数的极限是不存在的,但为了方便也可以说无穷大函数的极限是无穷大 \\ \,\\ 注意:无穷小不是负无穷。\\ 定理:无穷大的倒数是无穷小,无穷小(排除f(x)=0)的倒数是无穷大\\ \,\\ 性质:\\ 有限个无穷小的和、积仍是无穷小 \\ 无穷小量与有界量的积仍是无穷小 \\ 两个无穷大量的积仍是无穷大(一个正无穷大一个负无穷大,两个无穷大之和是0) \\ 无穷大与有界变量之和仍为无穷大 \\ 无穷大与非0常数乘积仍为无穷大 \\ \,\\ 当n \to +\infty,\ln^a n \ll n^b \ll a^n \ll n! \ll n^n \\ \,\\ 无穷大量与无界变量的关系:\\ 无穷大量一定无界,无界不一定是无穷大量(如这样一个数列:1、0、3、0、5、0\cdot\cdot\cdot) 无穷小的定义:如果函数f(x)当x→x0(或x→∞)时的极限为0,那么称函数f(x)为当x→x0(或x→∞)时的无穷小无穷小是变量,而0是唯一可以作为无穷小的常数无穷大的定义:设函数f(x)在x0的某一去心领域内有定义(或∣x∣大于某一正数时有定义),对于任意给定的正数M(不论多大),总存在正数δ(或正数X),只要x适合不等式0<∣x−x0∣<δ(或∣x∣>X),对应的函数值f(x)总满足不等式∣f(x)∣>M,那么称函数f(x)是当x→x0(或x→∞时的无穷大)无穷大也是变量,无穷大函数的极限是不存在的,但为了方便也可以说无穷大函数的极限是无穷大注意:无穷小不是负无穷。定理:无穷大的倒数是无穷小,无穷小(排除f(x)=0)的倒数是无穷大性质:有限个无穷小的和、积仍是无穷小无穷小量与有界量的积仍是无穷小两个无穷大量的积仍是无穷大(一个正无穷大一个负无穷大,两个无穷大之和是0)无穷大与有界变量之和仍为无穷大无穷大与非0常数乘积仍为无穷大当n→+∞,lnan≪nb≪an≪n!≪nn无穷大量与无界变量的关系:无穷大量一定无界,无界不一定是无穷大量(如这样一个数列:1、0、3、0、5、0⋅⋅⋅)
关于极限存在准则
存在 ± 不存在 = 不存在,不存在 ± 不存在 = 不一定 存在 × ( ÷ ) 不存在 = 不一定,不存在 × ( ÷ ) 不存在 = 不一定 lim f ( x ) g ( x ) 存在, lim g ( x ) = 0 ,则 lim f ( x ) = 0 准则一:夹逼准则:可用于证明 lim x → 0 s i n x x = 1 准则二:单调有界数列必有极限: lim x → ∞ ( 1 + 1 x ) x = e x → + ∞ 或 x → − ∞ lim ( 1 + 1 x ) x 都等于 e , lim x → ∞ ( 1 − 1 x ) x = 1 e 收敛数列一定有界,而有界数列不一定收敛; 如果有界数列且单调则收敛,但是收敛不一定单调有界(即单调有界只是充分条件不是必要条件) 柯西极限存在准则(柯西审敛原则):给出了数列收敛的充要条件 存在 \pm 不存在=不存在,不存在 \pm 不存在=不一定 \\ 存在 \times(\div) 不存在=不一定,不存在 \times(\div) 不存在=不一定 \\ \lim \frac{f(x)}{g(x)}存在,\lim g(x)=0,则\lim f(x)=0 \\ 准则一:夹逼准则:可用于证明\lim_{x \to 0}\frac{sinx}{x}=1\\ 准则二:单调有界数列必有极限:\lim_{x \to \infty}(1+\frac{1}{x})^x=e \\ x \to +\infty 或x \to -\infty \lim(1+\frac{1}{x})^x都等于e,\lim_{x \to \infty}(1-\frac{1}{x})^x=\frac{1}{e} \,\\ 收敛数列一定有界,而有界数列不一定收敛;\\ 如果有界数列且单调则收敛,但是收敛不一定单调有界(即单调有界只是充分条件不是必要条件)\\ 柯西极限存在准则(柯西审敛原则):给出了数列收敛的充要条件 \\ 存在±不存在=不存在,不存在±不存在=不一定存在×(÷)不存在=不一定,不存在×(÷)不存在=不一定limg(x)f(x)存在,limg(x)=0,则limf(x)=0准则一:夹逼准则:可用于证明x→0limxsinx=1准则二:单调有界数列必有极限:x→∞lim(1+x1)x=ex→+∞或x→−∞lim(1+x1)x都等于e,x→∞lim(1−x1)x=e1收敛数列一定有界,而有界数列不一定收敛;如果有界数列且单调则收敛,但是收敛不一定单调有界(即单调有界只是充分条件不是必要条件)柯西极限存在准则(柯西审敛原则):给出了数列收敛的充要条件
关于无穷小的比较
根据极限运算法则,两个无穷小的和差积都是无穷小,但是商有不同的情况。 两个无穷小之比的极限的各种不同情况,反映了不同的无穷小趋于 0 的快慢程度。 越高阶,趋于 0 就越快。高阶记作 β = o ( α ) ,比如 α 是 x ,那么 x 2 和 x 3 都可以记作 o ( α ) 若 lim α ( x ) ∣ β ( x ) ∣ k = a ≠ 0 , k > 0 ,则 α ( x ) 是 β ( x ) 的 k 阶无穷小,如 x 100 是 x 的 100 阶无穷小, k 相当于一个度量单位 只有在两个无穷小之比的极限存在或为 ∞ 时,无穷小量的比较才有意义 常用的等价无穷小(当 x → 0 时): x ∼ s i n x ∼ t a n x ∼ a r c s i n x ∼ a r c t a n x 1 + x n − 1 ∼ 1 n x 或 ( 1 + x ) a − 1 ∼ a x ,方便求根式极限 1 − c o s x ∼ 1 2 x 2 s e c x − 1 ∼ 1 2 x 2 l n ( 1 + x ) ∼ x e x − 1 ∼ x l o g a ( 1 + x ) ∼ x l n a a x − 1 ∼ x ln a x − sin x ∼ 1 6 x 3 x − arcsin x ∼ − 1 6 x 3 x − arctan x ∼ 1 3 x 3 x − tan x ∼ − 1 3 x 3 x − ln ( 1 + x ) ∼ 1 2 x 2 等价无穷小替换原则:因式可以直接替换,加减法尽量不替换 和差关系在满足一定条件下可以做等价替换: 若 lim f 1 ( x ) g 1 ( x ) = A ≠ 1 ,则 lim [ f 1 ( x ) − g 1 ( x ) ] = lim [ f 2 ( x ) − g 2 ( x ) ] 若 lim f 1 ( x ) g 1 ( x ) = A ≠ − 1 ,则 lim [ f 1 ( x ) + g 1 ( x ) ] = lim [ f 2 ( x ) + g 2 ( x ) ] 根据极限运算法则,两个无穷小的和差积都是无穷小,但是商有不同的情况。\\ 两个无穷小之比的极限的各种不同情况,反映了不同的无穷小趋于0的快慢程度。\\ \,\\ 越高阶,趋于0就越快。高阶记作\beta=o(\alpha),比如\alpha是x,那么x^2和x^3都可以记作o(\alpha) \\ 若\lim_{}\frac{\alpha(x)}{|\beta(x)|^k}=a \ne 0,k>0,则\alpha(x)是\beta(x)的k阶无穷小,如x^{100}是x的100阶无穷小,k相当于一个度量单位 \\ 只有在两个无穷小之比的极限存在或为∞时,无穷小量的比较才有意义 \\ \,\\ 常用的等价无穷小(当x \to 0时):\\ x\sim sinx \sim tanx \sim arcsinx \sim arctanx\\ \sqrt[n]{1+x}-1 \sim \frac{1}{n}x \;或\;(1+x)^a-1 \sim ax,方便求根式极限\\ 1-cosx \sim \frac{1}{2}x^2 \\ secx-1 \sim \frac{1}{2}x^2 \\ ln(1+x) \sim x \\ e^x-1 \sim x \\ log_a(1+x) \sim \frac{x}{ln \, a} \\ a^x-1 \sim x \, \ln a \\ x-\sin x\sim \frac{1}{6}x^3 \\ x-\arcsin x\sim -\frac{1}{6}x^3 \\ x-\arctan x\sim \frac{1}{3}x^3 \\ x-\tan x\sim -\frac{1}{3}x^3 \\ x-\ln (1+x)\sim \frac{1}{2}x^2 \\ 等价无穷小替换原则:因式可以直接替换,加减法尽量不替换 \\ \,\\ 和差关系在满足一定条件下可以做等价替换:\\ 若\lim \frac{f_1(x)}{g_1(x)}=A \ne 1,则\lim[f_1(x)-g_1(x)]=\lim[f_2(x)-g_2(x)] \\ 若\lim \frac{f_1(x)}{g_1(x)}=A \ne -1,则\lim[f_1(x)+g_1(x)]=\lim[f_2(x)+g_2(x)] 根据极限运算法则,两个无穷小的和差积都是无穷小,但是商有不同的情况。两个无穷小之比的极限的各种不同情况,反映了不同的无穷小趋于0的快慢程度。越高阶,趋于0就越快。高阶记作β=o(α),比如α是x,那么x2和x3都可以记作o(α)若lim∣β(x)∣kα(x)=a=0,k>0,则α(x)是β(x)的k阶无穷小,如x100是x的100阶无穷小,k相当于一个度量单位只有在两个无穷小之比的极限存在或为∞时,无穷小量的比较才有意义常用的等价无穷小(当x→0时):x∼sinx∼tanx∼arcsinx∼arctanxn1+x−1∼n1x或(1+x)a−1∼ax,方便求根式极限1−cosx∼21x2secx−1∼21x2ln(1+x)∼xex−1∼xloga(1+x)∼lnaxax−1∼xlnax−sinx∼61x3x−arcsinx∼−61x3x−arctanx∼31x3x−tanx∼−31x3x−ln(1+x)∼21x2等价无穷小替换原则:因式可以直接替换,加减法尽量不替换和差关系在满足一定条件下可以做等价替换:若limg1(x)f1(x)=A=1,则lim[f1(x)−g1(x)]=lim[f2(x)−g2(x)]若limg1(x)f1(x)=A=−1,则lim[f1(x)+g1(x)]=lim[f2(x)+g2(x)]
关于求极限
例题:求极限 lim x → 0 ( 1 + x 2 ) 1 l n ( 1 + x 2 ) 解:使用凑 e 思想,令原式 = { [ 1 + ( 1 + x 2 − 1 ) ] 1 1 + x 2 − 1 } 1 + x 2 − 1 l n ( 1 + x 2 ) 分别求极限得 lim x → 0 ( 1 + x 2 ) 1 l n ( 1 + x 2 ) = e 1 2 不管是数列极限还是函数极限,都要先判断未定式的类型 求 1 ∞ 类型的方法: { 1 、第二重要极限(凑 e ) 2 、幂指转化 3 、公式法( ( 1 + u ) v = e u v , u v = e v ( u − 1 ) ) 求极限方法总结: { 1 、利用极限四则运算 2 、利用两个重要极限 3 、利用等价无穷小 4 、利用洛必达法则 5 、利用夹逼准则 6 、利用单调有界数列极限准则 7 、利用无穷小的性质 8 、利用函数的连续性 9 、利用泰勒公式 7 种未定式类型都可以用洛必达: { 0 0 、 ∞ ∞ 、 0 ⋅ ∞ → 直接用 ∞ ± ∞ → 通分有理化 1 ∞ 、 ∞ 0 、 0 0 → 取指数 e ln 例题:求极限\lim_{x \to 0}(\sqrt{1+x^2})^\frac{1}{ln(1+x^2)} \\ 解:使用凑e思想,令原式=\{[1+(\sqrt{1+x^2}-1)]^\frac{1}{\sqrt{1+x^2}-1}\}^\frac{\sqrt{1+x^2}-1}{ln(1+x^2)}\\ 分别求极限得\lim_{x \to 0}(\sqrt{1+x^2})^\frac{1}{ln(1+x^2)}=e^\frac{1}{2} \\ \,\\ 不管是数列极限还是函数极限,都要先判断未定式的类型 \\ 求1^{\infty}类型的方法: \begin{cases} 1、第二重要极限(凑e)\\ 2、幂指转化 \\ 3、公式法((1+u)^v=e^{uv},u^v=e^{v(u-1)}) \end{cases} \,\\ 求极限方法总结:\\ \begin{cases} 1、利用极限四则运算 \\ 2、利用两个重要极限 \\ 3、利用等价无穷小 \\ 4、利用洛必达法则 \\ 5、利用夹逼准则 \\ 6、利用单调有界数列极限准则 \\ 7、利用无穷小的性质 \\ 8、利用函数的连续性 \\ 9、利用泰勒公式 \\ \end{cases} \\ \,\\ 7种未定式类型都可以用洛必达:\\ \begin{cases} \frac{0}{0}、\frac{\infty}{\infty}、0\cdot \infty \to 直接用 \\ \infty \pm \infty \to 通分有理化 \\ 1^{\infty}、\infty^0、0^0 \to 取指数e^{\ln} \end{cases} 例题:求极限x→0lim(1+x2)ln(1+x2)1解:使用凑e思想,令原式={[1+(1+x2−1)]1+x2−11}ln(1+x2)1+x2−1分别求极限得x→0lim(1+x2)ln(1+x2)1=e21不管是数列极限还是函数极限,都要先判断未定式的类型求1∞类型的方法:⎩ ⎨ ⎧1、第二重要极限(凑e)2、幂指转化3、公式法((1+u)v=euv,uv=ev(u−1))求极限方法总结:⎩ ⎨ ⎧1、利用极限四则运算2、利用两个重要极限3、利用等价无穷小4、利用洛必达法则5、利用夹逼准则6、利用单调有界数列极限准则7、利用无穷小的性质8、利用函数的连续性9、利用泰勒公式7种未定式类型都可以用洛必达:⎩ ⎨ ⎧00、∞∞、0⋅∞→直接用∞±∞→通分有理化1∞、∞0、00→取指数eln
函数连续性
定义: 设函数 f ( x ) 在点 x 0 的某一领域内有定义,如果 lim x → x 0 f ( x ) = f ( x 0 ) ,那么就称函数 f ( x ) 在点 x 0 处连续 函数连续的充分必要条件是左右都连续 f ( x ) 在 x 0 处连续,要求: { ( 1 ) f ( x ) 在 x 0 处有定义 ( 2 ) lim x → x 0 f ( x ) 存在 ( 3 ) lim x → x 0 f ( x ) = f ( x 0 ) 区间上连续: { 开区间:要求每一点都连续 闭区间:要求两个端点分别右连续和左连续,其他点都连续 半开区间:要求其中一个端点左连续或右连续,其他点都连续 间断点分类: { 第一类间断点(左右极限都存在): { 可去间断点:如 f ( x ) = s i n x x 跳跃间断点:如 f ( x ) = s g n x 第二类间断点(左右极限至少有一个不存在): { 振荡间断点:如 f ( x ) = s i n 1 x 无穷间断点:如 f ( x ) = 1 x 2 如何证初等函数连续性,只要解决以下几个问题即可: ( 1 )和差积商 ( 2 )复合函数 ( 3 )反函数 ( 4 )基本初等函数:指数函数 a x 、三角函数( s i n x 、 c o s x ) 幂函数 x u 可以写成 e u l n x 最后得出结论: ( 1 )基本初等函数在定义域内都是连续的 ( 2 )初等函数在定义区间内是连续的(如果不说成定义区间,则有反例 c o s x − 1 ) 闭区间上连续函数的性质 : 设 f ( x ) 在 [ a , b ] 上连续,则: { ( 1 )有最大值和最小值 ( 2 )有界 ( 3 )零点定理:如果 f ( a ) 与 f ( b ) 异号,则至少有一个零点 ( 4 )介值定理:如果 f ( a ) 与 f ( b ) 不等,至少有一点 x 0 使 f ( x 0 ) = C ( C 是 f ( a ) 与 f ( b ) 之间的值) 零点定理是介质定理的特例,零点定理用的更多 定义:\\ 设函数f(x)在点x_0的某一领域内有定义,如果\lim_{x \to x_0}f(x)=f(x_0),那么就称函数f(x)在点x_0处连续 \\ 函数连续的充分必要条件是左右都连续 \\ \,\\ f(x)在x_0处连续,要求:\begin{cases} (1)f(x)在x_0处有定义 \\ (2)\lim_{x \to x_0}f(x)存在 \\ (3)\lim_{x \to x_0}f(x)=f(x_0) \end{cases} \\\,\\ 区间上连续:\begin{cases} 开区间:要求每一点都连续 \\ 闭区间:要求两个端点分别右连续和左连续,其他点都连续 \\ 半开区间:要求其中一个端点左连续或右连续,其他点都连续 \\ \end{cases}\\\,\\ 间断点分类:\\ \begin{cases} 第一类间断点(左右极限都存在): \begin{cases} 可去间断点:如f(x)=\frac{sinx}{x} \\ 跳跃间断点:如f(x)=sgn\,x \\ \end{cases} \\ 第二类间断点(左右极限至少有一个不存在): \begin{cases} 振荡间断点:如f(x)=sin\frac{1}{x} \\ 无穷间断点:如f(x)=\frac{1}{x^2} \\ \end{cases} \end{cases} \\\,\\ 如何证初等函数连续性,只要解决以下几个问题即可:\\ (1)和差积商\\ (2)复合函数\\ (3)反函数\\ (4)基本初等函数:指数函数a^x、三角函数(sin\,x、cos\,x)\\ 幂函数x^u可以写成e^{u\,lnx}\\ \,\\ 最后得出结论:\\ (1)基本初等函数在定义域内都是连续的\\ (2)初等函数在定义区间内是连续的(如果不说成定义区间,则有反例\sqrt{cos\,x-1})\\ \,\\ \textbf{闭区间上连续函数的性质}: \\ 设f(x)在[a,b]上连续,则:\\ \begin{cases} (1)有最大值和最小值\\ (2)有界\\ (3)零点定理:如果f(a)与f(b)异号,则至少有一个零点\\ (4)介值定理:如果f(a)与f(b)不等,至少有一点x_0使f(x_0)=C(C是f(a)与f(b)之间的值)\\ \end{cases}\\ 零点定理是介质定理的特例,零点定理用的更多 定义:设函数f(x)在点x0的某一领域内有定义,如果x→x0limf(x)=f(x0),那么就称函数f(x)在点x0处连续函数连续的充分必要条件是左右都连续f(x)在x0处连续,要求:⎩ ⎨ ⎧(1)f(x)在x0处有定义(2)limx→x0f(x)存在(3)limx→x0f(x)=f(x0)区间上连续:⎩ ⎨ ⎧开区间:要求每一点都连续闭区间:要求两个端点分别右连续和左连续,其他点都连续半开区间:要求其中一个端点左连续或右连续,其他点都连续间断点分类:⎩ ⎨ ⎧第一类间断点(左右极限都存在):{可去间断点:如f(x)=xsinx跳跃间断点:如f(x)=sgnx第二类间断点(左右极限至少有一个不存在):{振荡间断点:如f(x)=sinx1无穷间断点:如f(x)=x21如何证初等函数连续性,只要解决以下几个问题即可:(1)和差积商(2)复合函数(3)反函数(4)基本初等函数:指数函数ax、三角函数(sinx、cosx)幂函数xu可以写成eulnx最后得出结论:(1)基本初等函数在定义域内都是连续的(2)初等函数在定义区间内是连续的(如果不说成定义区间,则有反例cosx−1)闭区间上连续函数的性质:设f(x)在[a,b]上连续,则:⎩ ⎨ ⎧(1)有最大值和最小值(2)有界(3)零点定理:如果f(a)与f(b)异号,则至少有一个零点(4)介值定理:如果f(a)与f(b)不等,至少有一点x0使f(x0)=C(C是f(a)与f(b)之间的值)零点定理是介质定理的特例,零点定理用的更多
证明1
证明:数列 lim n → ∞ ( 1 + 1 n ) n = e 思想:当证出其单调有界之后,那么极限就必定存在,但其实这个极限值并不知道, 只是用 e 当个记号而已,后面才求出来 e = 2.718281... , e 是无理数 首先计算出数列前两项为 2 、 9 4 ,猜想其为单调增,下面开始证明。 ( 1 )先证其单调增 要想证明其单调增,即证明 ( 1 + 1 n ) n ≤ ( 1 + 1 n + 1 ) n + 1 左式令其为 n + 1 项相乘,即 ( 1 + 1 n ) . . . ( 1 + 1 n ) ⏟ n 个 × 1 利用算术、几何平均值不等式 a + b 2 ≥ a b 等价于 a b ≤ ( a + b 2 ) 2 即 ( 1 + 1 n ) n ≤ ( n + 2 n + 1 ) n + 1 而右式 ( 1 + 1 n + 1 ) n + 1 = ( n + 2 n + 1 ) n + 1 单调增证毕。 ( 2 )再证其上界 由于 ( 1 + 1 n ) . . . ( 1 + 1 n ) ⏟ n 个 × 1 ≤ ( n + 2 n + 1 ) n + 1 分子分母不等无法消除,因此可以多增加一项,使下面也为 n + 2 ,那如何使上面 n + 2 保持不变呢? 可以想到的是 ( 1 + 1 n ) . . . ( 1 + 1 n ) ⏟ n 个 × 1 ≤ ( n + 2 n + 1 ) n + 1 = 1 因此 ( 1 + 1 n ) n ≤ 4 上有界证明完毕。 证明:数列\lim_{n \to \infty}(1+\frac{1}{n})^n=e \\ 思想:当证出其单调有界之后,那么极限就必定存在,但其实这个极限值并不知道,\\只是用e当个记号而已,后面才求出来e=2.718281...,e是无理数 \\ \,\\ 首先计算出数列前两项为2、\frac{9}{4},猜想其为单调增,下面开始证明。 \\ \,\\ (1)先证其单调增 \\ 要想证明其单调增,即证明(1+\frac{1}{n})^n \le (1+\frac{1}{n+1})^{n+1} \\ 左式令其为n+1项相乘,即\underbrace{(1+\frac{1}{n})...(1+\frac{1}{n})}_{n个} ×1 \\ 利用算术、几何平均值不等式\frac{a+b}{2} \ge \sqrt{ab} 等价于ab \le(\frac{a+b}{2})^2 \\ 即(1+\frac{1}{n})^n \le (\frac{n+2}{n+1})^{n+1} \\ 而右式(1+\frac{1}{n+1})^{n+1}=(\frac{n+2}{n+1})^{n+1} \\ 单调增证毕。 \\ \,\\ (2)再证其上界 \\ 由于\underbrace{(1+\frac{1}{n})...(1+\frac{1}{n})}_{n个} ×1 \le (\frac{n+2}{n+1})^{n+1}\\ 分子分母不等无法消除,因此可以多增加一项,使下面也为n+2,那如何使上面n+2保持不变呢? \\ 可以想到的是\underbrace{(1+\frac{1}{n})...(1+\frac{1}{n})}_{n个} ×1 \le (\frac{n+2}{n+1})^{n+1}=1 \\ 因此(1+\frac{1}{n})^n \le 4 \\ 上有界证明完毕。 证明:数列n→∞lim(1+n1)n=e思想:当证出其单调有界之后,那么极限就必定存在,但其实这个极限值并不知道,只是用e当个记号而已,后面才求出来e=2.718281...,e是无理数首先计算出数列前两项为2、49,猜想其为单调增,下面开始证明。(1)先证其单调增要想证明其单调增,即证明(1+n1)n≤(1+n+11)n+1左式令其为n+1项相乘,即n个 (1+n1)...(1+n1)×1利用算术、几何平均值不等式2a+b≥ab等价于ab≤(2a+b)2即(1+n1)n≤(n+1n+2)n+1而右式(1+n+11)n+1=(n+1n+2)n+1单调增证毕。(2)再证其上界由于n个 (1+n1)...(1+n1)×1≤(n+1n+2)n+1分子分母不等无法消除,因此可以多增加一项,使下面也为n+2,那如何使上面n+2保持不变呢?可以想到的是n个 (1+n1)...(1+n1)×1≤(n+1n+2)n+1=1因此(1+n1)n≤4上有界证明完毕。
证明2
根据证明 1 ,知道了数列 lim n → ∞ ( 1 + 1 n ) n = e ,下面证明函数 lim x → ∞ ( 1 + 1 x ) x = e ( 1 )当 x → + ∞ 时 我们知道 x − 1 ≤ [ x ] ≤ x 下面进行放缩, ( 1 + 1 [ x ] + 1 ) [ x ] + 1 − 1 ≤ ( 1 + 1 x ) x ≤ ( 1 + 1 [ x ] ) [ x ] + 1 左侧 ( 1 + 1 [ x ] + 1 ) [ x ] + 1 − 1 = ( 1 + 1 [ x ] + 1 ) [ x ] + 1 ( 1 + 1 [ x ] + 1 ) , lim x → + ∞ ( 1 + 1 [ x ] + 1 ) [ x ] + 1 − 1 = e 1 = e 右侧 ( 1 + 1 [ x ] ) [ x ] + 1 = ( 1 + 1 [ x ] ) [ x ] × ( 1 + 1 [ x ] ) , lim x → + ∞ ( 1 + 1 [ x ] ) [ x ] + 1 = e × 1 = e 根据夹逼准则,可得 lim x → + ∞ ( 1 + 1 x ) x = e ( 2 )当 x → − ∞ 时 令 t = − x , lim x → − ∞ ( 1 + 1 x ) x = lim t → + ∞ ( 1 − 1 t ) − t = lim t → + ∞ ( t t − 1 ) t lim t → + ∞ ( 1 + 1 t − 1 ) t − 1 × ( 1 + 1 t − 1 ) = e × 1 = e ,证毕 根据证明1,知道了数列\lim_{n \to \infty}(1+\frac{1}{n})^n=e,下面证明函数\lim_{x \to \infty}(1+\frac{1}{x})^x=e \\ \,\\ (1)当x \to +\infty时 \\ 我们知道x-1 \le [x] \le x \\ 下面进行放缩,(1+\frac{1}{[x]+1})^{[x]+1-1} \le (1+\frac{1}{x})^x \le (1+\frac{1}{[x]})^{[x]+1} \\ 左侧(1+\frac{1}{[x]+1})^{[x]+1-1}=\frac{(1+\frac{1}{[x]+1})^{[x]+1}}{(1+\frac{1}{[x]+1})},\lim_{x \to +\infty}(1+\frac{1}{[x]+1})^{[x]+1-1}=\frac{e}{1}=e \\ 右侧(1+\frac{1}{[x]})^{[x]+1}=(1+\frac{1}{[x]})^{[x]} × (1+\frac{1}{[x]}),\lim_{x \to +\infty}(1+\frac{1}{[x]})^{[x]+1}=e×1=e \\ 根据夹逼准则,可得\lim_{x \to +\infty}(1+\frac{1}{x})^x=e \\ \,\\ (2)当x \to -\infty时 \\ 令t=-x,\lim_{x \to -\infty}(1+\frac{1}{x})^x=\lim_{t \to +\infty}(1-\frac{1}{t})^{-t}=\lim_{t \to +\infty}(\frac{t}{t-1})^{t} \\ \lim_{t \to +\infty}(1+\frac{1}{t-1})^{t-1}×(1+\frac{1}{t-1})=e×1=e,证毕 根据证明1,知道了数列n→∞lim(1+n1)n=e,下面证明函数x→∞lim(1+x1)x=e(1)当x→+∞时我们知道x−1≤[x]≤x下面进行放缩,(1+[x]+11)[x]+1−1≤(1+x1)x≤(1+[x]1)[x]+1左侧(1+[x]+11)[x]+1−1=(1+[x]+11)(1+[x]+11)[x]+1,x→+∞lim(1+[x]+11)[x]+1−1=1e=e右侧(1+[x]1)[x]+1=(1+[x]1)[x]×(1+[x]1),x→+∞lim(1+[x]1)[x]+1=e×1=e根据夹逼准则,可得x→+∞lim(1+x1)x=e(2)当x→−∞时令t=−x,x→−∞lim(1+x1)x=t→+∞lim(1−t1)−t=t→+∞lim(t−1t)tt→+∞lim(1+t−11)t−1×(1+t−11)=e×1=e,证毕
证明3
证明当 x → 0 时, 1 + x n − 1 ∼ 1 n x 即证 lim x → 0 1 + x n − 1 x = 1 n 令 t = 1 + x n − 1 ,则当 x → 0 时, t → 0 ,且 x = ( t + 1 ) n − 1 lim x → 0 1 + x n − 1 x = t ( t + 1 ) n − 1 = t C n 0 t n + C n 1 t n − 1 + . . . + C n n − 1 t + C n n t 0 − 1 = 1 C n 0 t n − 1 + C n 1 t n − 2 + . . . + C n n − 2 t + C n n − 1 = 1 n 证明当x \to 0时,\sqrt[n]{1+x}-1 \sim \frac{1}{n}x \\ 即证\lim_{x \to 0}\frac{\sqrt[n]{1+x}-1}{x}=\frac{1}{n} \\ 令t=\sqrt[n]{1+x}-1,则当x \to 0时,t \to 0,且x=(t+1)^n-1 \\ \lim_{x \to 0}\frac{\sqrt[n]{1+x}-1}{x}=\frac{t}{(t+1)^n-1}=\frac{t}{C^0_nt^n+C^1_nt^{n-1}+...+C^{n-1}_nt+C^n_nt^0-1} \\ =\frac{1}{C^0_nt^{n-1}+C^1_nt^{n-2}+...+C^{n-2}_nt+C^{n-1}_n}=\frac{1}{n} \\ 证明当x→0时,n1+x−1∼n1x即证x→0limxn1+x−1=n1令t=n1+x−1,则当x→0时,t→0,且x=(t+1)n−1x→0limxn1+x−1=(t+1)n−1t=Cn0tn+Cn1tn−1+...+Cnn−1t+Cnnt0−1t=Cn0tn−1+Cn1tn−2+...+Cnn−2t+Cnn−11=n1
证明4
证明定理 α ( x ) ∼ β ( x ) 的充分必要条件是 α ( x ) = β ( x ) + o ( β ( x ) ) ( 1 )先证左 → 右。 要证 α ( x ) = β ( x ) + o ( β ( x ) ) ,则 α ( x ) − β ( x ) = o ( β ( x ) ) ,那么 α ( x ) − β ( x ) β ( x ) = 0 而 α ( x ) β ( x ) = 1 ,所以该式成立 ( 2 )再证右 → 左。 要证 α ( x ) ∼ β ( x ) ,即证明 α ( x ) β ( x ) = 1 而 α ( x ) − β ( x ) β ( x ) = 0 ,得 α ( x ) β ( x ) = 1 ,即证 该定理的意义在于:一个无穷小可以用另一个无穷小代替,误差控制在比 β 更高阶的无穷小 如 s i n x = x + o ( x ) , 1 + x n − 1 = 1 n x + o ( x ) 另外, a ± o ( a ) ∼ a ,如 x + x 2 ∼ x 证明定理\alpha(x) \sim \beta(x)的充分必要条件是\alpha(x) = \beta(x)+o(\beta(x)) \\ (1)先证左 \to 右。\\ 要证\alpha(x) = \beta(x)+o(\beta(x)),则\alpha(x) - \beta(x)=o(\beta(x)),那么\frac{\alpha(x)-\beta(x)}{\beta(x)}=0 \\ 而\frac{\alpha(x)}{\beta(x)}=1,所以该式成立 \\ (2)再证右 \to 左。\\ 要证\alpha(x) \sim \beta(x),即证明\frac{\alpha(x)}{\beta(x)}=1 \\ 而\frac{\alpha(x)-\beta(x)}{\beta(x)}=0,得\frac{\alpha(x)}{\beta(x)}=1,即证\\ \,\\ 该定理的意义在于:一个无穷小可以用另一个无穷小代替,误差控制在比\beta更高阶的无穷小 \\ 如sinx=x+o(x),\sqrt[n]{1+x}-1=\frac{1}{n}x+o(x) \\ 另外,a \pm o(a) \sim a,如x+x^2 \sim x 证明定理α(x)∼β(x)的充分必要条件是α(x)=β(x)+o(β(x))(1)先证左→右。要证α(x)=β(x)+o(β(x)),则α(x)−β(x)=o(β(x)),那么β(x)α(x)−β(x)=0而β(x)α(x)=1,所以该式成立(2)再证右→左。要证α(x)∼β(x),即证明β(x)α(x)=1而β(x)α(x)−β(x)=0,得β(x)α(x)=1,即证该定理的意义在于:一个无穷小可以用另一个无穷小代替,误差控制在比β更高阶的无穷小如sinx=x+o(x),n1+x−1=n1x+o(x)另外,a±o(a)∼a,如x+x2∼x
证明5
等价无穷小代换定理 证明定理: α ∼ α ′ , β ∼ β ′ ,若 lim β α 存在,则 lim β α = lim β ′ α ′ lim β α = lim β β ′ × β ′ α α ′ × α ′ = lim β ′ α ′ ,即证 等价无穷小代换定理 \\ 证明定理:\alpha \sim \alpha',\beta \sim \beta',若\lim\frac{\beta}{\alpha}存在,则\lim\frac{\beta}{\alpha}=\lim\frac{\beta'}{\alpha'} \\ \lim\frac{\beta}{\alpha}=\lim\frac{\frac{\beta}{\beta'}×\beta'}{\frac{\alpha}{\alpha'}×\alpha'}=\lim\frac{\beta'}{\alpha'},即证 等价无穷小代换定理证明定理:α∼α′,β∼β′,若limαβ存在,则limαβ=limα′β′limαβ=limα′α×α′β′β×β′=limα′β′,即证
证明6
证明: s i n x 在区间 ( − ∞ , + ∞ ) 上连续 即证 Δ y = s i n ( x 0 + Δ x ) − s i n x 0 = 0 这里不能用结论证结论,即当 Δ x → 0 时, s i n ( x 0 + Δ x ) = s i n ( x 0 ) ,这利用了 s i n x 的连续性 下面开始证明。 s i n ( x 0 + Δ x ) − s i n x 0 = 2 s i n Δ x 2 c o s 2 x 0 + Δ x 2 ∣ Δ y ∣ = 2 ∣ s i n Δ x 2 ∣ ∣ c o s 2 x 0 + Δ x 2 ∣ ≤ 2 ∣ s i n Δ x 2 ∣ ≤ 2 s i n ∣ Δ x ∣ 2 本来 ∣ s i n Δ x 2 ∣ ≥ s i n ∣ Δ x ∣ 2 才对,但因为 Δ x 很小,所以倒过来也成立 又因为 s i n x < x < t a n x , x ∈ ( 0 , π 2 ) , 因此 2 s i n ∣ Δ x ∣ 2 < 2 ∣ Δ x ∣ 2 ,当 Δ x → 0 时, Δ y → 0 由于 x 0 是任取的,因此 s i n x 在每一点都连续 证毕 证明:sin\,x在区间(-\infty,+\infty)上连续 \\ \,\\ 即证\Delta y=sin(x_0+\Delta x)-sin x_0=0 \\ 这里不能用结论证结论,即当\Delta x \to 0时,sin(x_0+\Delta x)=sin(x_0),这利用了sinx的连续性 \\ \,\\ 下面开始证明。\\ sin(x_0+\Delta x)-sinx_0=2sin\frac{\Delta x}{2}cos\frac{2x_0+\Delta x}{2} \\ |\Delta y|=2|sin\frac{\Delta x}{2}||cos\frac{2x_0+\Delta x}{2}| \le 2|sin\frac{\Delta x}{2}| \le 2sin\frac{|\Delta x|}{2}\\ 本来|sin\frac{\Delta x}{2}| \ge sin\frac{|\Delta x|}{2}才对,但因为\Delta x很小,所以倒过来也成立\\ 又因为sinx<x<tanx,x \in (0,\frac{\pi}{2}),\\ 因此2sin\frac{|\Delta x|}{2} < 2\frac{|\Delta x|}{2},当\Delta x \to 0时,\Delta y \to 0 \\ 由于x_0是任取的,因此sinx在每一点都连续 \\ \,\\ 证毕 证明:sinx在区间(−∞,+∞)上连续即证Δy=sin(x0+Δx)−sinx0=0这里不能用结论证结论,即当Δx→0时,sin(x0+Δx)=sin(x0),这利用了sinx的连续性下面开始证明。sin(x0+Δx)−sinx0=2sin2Δxcos22x0+Δx∣Δy∣=2∣sin2Δx∣∣cos22x0+Δx∣≤2∣sin2Δx∣≤2sin2∣Δx∣本来∣sin2Δx∣≥sin2∣Δx∣才对,但因为Δx很小,所以倒过来也成立又因为sinx<x<tanx,x∈(0,2π),因此2sin2∣Δx∣<22∣Δx∣,当Δx→0时,Δy→0由于x0是任取的,因此sinx在每一点都连续证毕
证明7
( 1 )证明 lim x → 0 l n ( 1 + x ) x = 1 原式 = lim x → 0 l n ( 1 + x ) 1 x = l n e = 1 ( 2 )证明 lim x → 0 a x − 1 x = l n a ( a > 0 ) 令 t = a x − 1 ,当 x → 0 , t → 0 原式 = lim t → 0 t l o g a t + 1 = lim t → 0 1 l o g a ( t + 1 ) 1 t = 1 l o g a e = l n a ( 3 )证明 lim x → 0 ( 1 + x ) a − 1 x = a 令 t = ( 1 + x ) a − 1 , 当 x → 0 , t → 0 , 且 l n ( t + 1 ) = a l n ( 1 + x ) 原式 = lim x → 0 t x × a l n ( 1 + x ) l n ( 1 + t ) = a (1)证明\lim_{x \to 0}\frac{ln(1+x)}{x}=1 \\ 原式=\lim_{x \to 0}ln(1+x)^{\frac{1}{x}}=ln\,e=1 \\ (2)证明\lim_{x \to 0}\frac{a^x-1}{x}=ln\,a(a>0) \\ 令t=a^x-1,当x \to 0,t \to 0 \\ 原式=\lim_{t \to 0}\frac{t}{log_at+1}=\lim_{t \to 0}\frac{1}{log_a(t+1)^{\frac{1}{t}}}=\frac{1}{log_ae}=ln\,a \\ (3)证明\lim_{x \to 0}\frac{(1+x)^a-1}{x}=a \\ 令t=(1+x)^a-1,当x \to 0,t \to 0 ,且ln(t+1)=a\,ln(1+x)\\ 原式=\lim_{x \to 0}\frac{t}{x}×\frac{a\,ln(1+x)}{ln(1+t)}=a (1)证明x→0limxln(1+x)=1原式=x→0limln(1+x)x1=lne=1(2)证明x→0limxax−1=lna(a>0)令t=ax−1,当x→0,t→0原式=t→0limlogat+1t=t→0limloga(t+1)t11=logae1=lna(3)证明x→0limx(1+x)a−1=a令t=(1+x)a−1,当x→0,t→0,且ln(t+1)=aln(1+x)原式=x→0limxt×ln(1+t)aln(1+x)=a