高等数学 · 第一章 函数

第一节 实数

一、实数的定义

有理数与无理数统称为 实数 ,全体实数组成的数集成为实数集,用 R R R 表示;用 Q Q Q 表示有理数集, Z Z Z 表示整数集, N N N 表示自然数集。
实数

二、区间和领域

区间
  1. 列举法: A = { 1 , 2 , 3 , 4 } A = \{ 1,2,3,4 \} A={1,2,3,4}
  2. 属性法: A = { n ∣ n 是 小 于 5 的 正 整 数 } A = \{ n | n是小于5的正整数\} A={nn5} B = { x ∣ 1 &lt; x &lt; 2 } B = \{ x | 1 \lt x \lt 2 \} B={x1<x<2}

像这样由数轴上的“一段”连续的点构成的数集,我们称之为区间,记为 ( 1 , 2 ) (1,2) (1,2)这是开区间
如果数集为: C = { y ∣ 1 ≤ y ≤ 2 } C = \{ y | 1 \le y \le 2 \} C={y1y2},那么记为 [ 1 , 2 ] [1,2] [1,2]这是闭区间

邻域

我们经常会运用一种特殊的开区间 ( α − δ , α + δ ) (\alpha - \delta, \alpha + \delta) (αδ,α+δ),我们称这个开区间为点 α \alpha α 的邻域,记为 U ( α , δ ) U(\alpha,\delta) U(α,δ),即
U ( α , δ ) = ( α − δ , α + δ ) U(\alpha, \delta) = (\alpha - \delta, \alpha + \delta) U(α,δ)=(αδ,α+δ)

称点 α \alpha α 为邻域的中心, δ \delta δ为邻域的半径。

有时候,我们只考虑点 α \alpha α 邻近的点,而不考虑点 α \alpha α ,即考虑点集 { x ∣ α − δ &lt; x &lt; α 且 α &lt; x &lt; α + δ } \{ x | \alpha - \delta \lt x \lt \alpha 且 \alpha \lt x \lt \alpha + \delta \} {xαδ<x<αα<x<α+δ},我们称这个点集为点 α \alpha α 的 “去心邻域”,记为 U ∘ ( α , δ ) {U^\circ(\alpha,\delta)} U(α,δ),即
U ∘ = { x ∣ α − δ &lt; x &lt; α 且 α &lt; x &lt; α + δ } U^\circ = \{ x | \alpha - \delta \lt x \lt \alpha 且 \alpha \lt x \lt \alpha + \delta \} U={xαδ<x<αα<x<α+δ}

三、绝对值

x x x 是一实数,用 ∣ x ∣ |x| x x x x 的绝对值,其定义如下:
∣ x ∣ = { x x ≥ 0 , − x x &lt; 0. |x| = \begin{cases} x &amp; \quad x \ge 0, \\ -x &amp; \quad x \lt 0. \end{cases} x={xxx0,x<0.

∣ x ∣ |x| x 的几何意义是 x x x 到原点的距离。显然, ∣ x − y ∣ |x-y| xy 表示点 x x x 与点 y y y 之间的距离。

绝对值有以下性质:设 x , y x,y x,y 是实数,则

  1. ∣ x ∣ ≥ 0 , |x| \ge 0, x0, 当且仅当 x = 0 x = 0 x=0 时才有 ∣ x ∣ = 0 ; |x| = 0; x=0;
  2. ∣ − x ∣ = ∣ x ∣ ; |-x| = |x|; x=x;
  3. ∣ x y ∣ = ∣ x ∣ ∣ y ∣ ; |xy| = |x||y|; xy=xy;
  4. a &gt; 0 , ∣ x ∣ &lt; a a \gt 0, |x| \lt a a>0,x<a 当且仅当 − a &lt; x &lt; a ; -a \lt x \lt a; a<x<a;
  5. − ∣ x ∣ ≤ x ≤ ∣ x ∣ ; -|x| \le x \le |x|; xxx;
  6. ∣ x + y ∣ ≤ ∣ x ∣ + ∣ y ∣ ; |x + y| \le |x| + |y|; x+yx+y;
  7. ∣ x − y ∣ ≥ ∣ ∣ x ∣ − ∣ y ∣ ∣ ≥ ∣ x ∣ − ∣ y ∣ . |x - y| \ge ||x| - |y|| \ge |x| - |y|. xyxyxy.
    以上性质均可通过其他性质证明,基本上直接运用。
例题

1、已知不等式 ∣ 2 x + 1 x − 1 ∣ &lt; 1 |\frac {2x + 1} { x - 1}| \lt 1 x12x+1<1,求 x x x的取值范围。
解析: − 4 &lt; x &lt; 2 / 3 -4 \lt x \lt {^2/_3} 4<x<2/3,通过性质四,再分段求解即可。

第二节 函数的定义及其表示法

一、常量与变量

有些量在所考虑问题的过程中始终不变,保持定量,这些量我们称之为常量;而有些量在所考虑问题的过程中是变化的,他们刻在一定的范围内取不同的值,这些量我们称之为变量

二、函数的定义

x , y x,y xy是两个变量, x x x 的变化范围是实数集 D D D.如果对于任何的 x ∈ D x \in D xD,按照一定的法则都有唯一确定的 y y y 值与之对应,则称变量 y y y 是变量 x x x 的函数,记为 y = f ( x ) y = f(x) y=f(x),称D是函数的定义域,x 为自变量,y为因变量.

对于一个确定的 x 0 ∈ D x_0 \in D x0D,与之对应的 y 0 = f ( x 0 ) y_0 = f(x_0) y0=f(x0) 称为函数 y y y 在点 x 0 x_0 x0 处的函数值,全体函数值的几何称为函数 y y y 的值域,记为 f ( D ) f(D) f(D) ,即
f ( D ) = { y ∣ y = f ( x ) , x ∈ D } f(D) = \{ y | y = f(x), x \in D \} f(D)={yy=f(x),xD}

函数的两要素:定义域和对应法则
“两个函数相等”意味着这两个函数的定义域相同,对应法则也相同。

常用的函数表示法:

  1. 公式法——分段函数
  2. 图像法
  3. 表格法
函数的定义域

一般地,自然定义域应如此讨论:

  1. 分式的分母不能为零
  2. 开偶次方的被开方式子不能为负
  3. 当方幂的指数是无理数或含有变数时,方底的式子应为正
  4. 对数符号后的式子(真数)不能为负
  5. 反正弦、反余弦符号后式子的绝对值不能大于1
  6. 有限个函数由四则运算得到的新函数, 其定义域是各函数定义域的交集
参考例题
  1. 计算题 : 求函数 f ( x ) = 1 x + 1 arcsin ⁡ e x f(x) = \cfrac {1}{x + 1} \arcsin e^x f(x)=x+11arcsinex 的定义域.
    [解析] :

    • x + 1 x + 1 x+1 作为分母不应该为 0 0 0.
    • 因为要考虑 arcsin ⁡ x \arcsin x arcsinx 的定义域, 所以 e x ∈ [ − 1 , 1 ] e ^ x \in [-1,1] ex[1,1]

    计算求两者区间的交集就好.

第三节 函数的几种特性

  1. 有界性 : ∣ f ( x ) ∣ ≤ M |f(x)| \le M f(x)M
  2. 单调性 :
    1. 单调递增 : 如果 x 1 , x 2 ∈ I , x 1 &lt; x 2 x_1,x_2 \in I, x_1 \lt x_2 x1,x2I,x1<x2 , 都存在 f ( x 1 ) &lt; f ( x 2 ) f(x_1) &lt; f(x_2) f(x1)<f(x2)
    2. 单调递减 : 如果 x 1 , x 2 ∈ I , x 1 &lt; x 2 x_1,x_2 \in I, x_1 \lt x_2 x1,x2I,x1<x2 , 都存在 f ( x 1 ) &gt; f ( x 2 ) f(x_1) \gt f(x_2) f(x1)>f(x2)
  3. 奇偶性
    1. 偶函数 : 对于定义域中的任意 x x x , 都存在 f ( − x ) = f ( x ) f(-x) = f(x) f(x)=f(x)
    2. 奇函数 : 对于定义域中的任意 x x x , 都存在 f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x)

    其中,对于对于两个在定义域内有定义的函数 :
    1. 两个偶函数之和,之积为偶函数
    2. 两个奇函数之和为奇函数,之积为偶函数
    3. 一个奇函数与一个偶函数之积为奇函数

  4. 周期性 : 必然存在 f ( x + T ) = f ( x ) f(x+T) = f(x) f(x+T)=f(x)
    例如 y = sin ⁡ x , y = cos ⁡ x , y = tan ⁡ x , y = cot ⁡ x 均 为 周 期 函 数 . y = \sin x, y = \cos x, y = \tan x, y = \cot x 均为周期函数. y=sinx,y=cosx,y=tanx,y=cotx.

第四节 反函数和复合函数

一、反函数

函数 y = f ( x ) y = f(x) y=f(x) 的定义域为 D D D,至于为 f ( D ) f(D) f(D). 若对任何 y ∈ f ( D ) y \in f(D) yf(D), 在 D D D 内有唯一确定的 x x x 使 y = f ( x ) y = f(x) y=f(x), 则称这样形成的函数 x x x y = f ( x ) y = f(x) y=f(x) 的反函数,记为 x = f − 1 ( y ) x = f^{-1}(y) x=f1(y), 相应地,也称函数 y = f ( x ) y = f(x) y=f(x) 是直接函数(原函数).

对于反函数 x = f − 1 ( y ) x = f^{-1}(y) x=f1(y), 定义域是 f ( D ) f(D) f(D), 值域是 D D D,
1. 单调函数具有反函数
2. 原函数与反函数关于 y = x y = x y=x 对称

参考例题
  1. y = e x − e − x 2 y = \cfrac {e^x - e^{-x}} {2} y=2exex 的反函数
    【解析】由 y = e x − e − x 2 ⇒ 2 y = e x − e − x y = \cfrac {e^x - e^{-x}} {2} \Rightarrow 2y = e^x - e^{-x} y=2exex2y=exex,等式两边乘以 e x e^x ex 可得:
    ( e x ) 2 − 2 y e x − 1 = 0 (e^x)^2 - 2ye^x - 1 = 0 (ex)22yex1=0
    解关于 e x e^x ex 的二次方程,得 e x = y ± y 2 + 1 . e^x = y \pm \sqrt {y^2 + 1}. ex=y±y2+1 .
    由于 e x ≥ 0 e^x \ge 0 ex0, 所以只取 e x = y + y 2 + 1 e^x = y + \sqrt{y^2 + 1} ex=y+y2+1 .从而
    x = l n ( y + y 2 + 1 ) . x = ln(y + \sqrt{y^2 + 1}). x=ln(y+y2+1 ).
    故反函数为 y = l n ( x + x 2 + 1 ) . y = ln(x + \sqrt{x^2 + 1}). y=ln(x+x2+1 ).

二、复合函数

函数 y = f ( u ) , u ∈ D u , u = φ ( x ) , x ∈ D x . y = f(u), u \in D_u, u = \varphi(x), x \in D_x. y=f(u),uDu,u=φ(x),xDx. 如果函数 u = φ ( x ) u = \varphi(x) u=φ(x) 的值域 φ ( D ) \varphi(D) φ(D) 包含在函数 y = f ( u ) y = f(u) y=f(u) 的定义域 D u D_u Du, 即 φ ( D x ) ⊂ D u \varphi(D_x) \subset D_u φ(Dx)Du, 那么,对任何 x ∈ D x \in D xD. 有 u = φ ( x ) u = \varphi(x) u=φ(x) 与之对应,又有 y = f ( u ) y = f(u) y=f(u) u u u 对应,从而对于任何 x ∈ D x \in D xD, 有确定的 y y y 与之对应,形成 y y y x x x 的函数,记为 y = f ( φ ( x ) )    ( x ∈ D x ) y = f(\varphi(x))\ \ (x \in D_x) y=f(φ(x))  (xDx) , 称之为是由 y = f ( u ) y = f(u) y=f(u) u = φ ( x ) u = \varphi(x) u=φ(x) 复合而成的复合函数. y y y 是因变量, x x x 是自变量, 称 u u u中间变量.

参考例题
  1. 计算题: 已知 f ( 1 + x ) = x 2 f(1+x) = x^2 f(1+x)=x2, 求 f ( x ) f(x) f(x).
    [解析] : 令 1 + x = u 1+x = u 1+x=u, 则 f ( u ) = ( u − 1 ) 2 f(u) = (u-1)^2 f(u)=(u1)2, 所以 f ( x ) = ( x − 1 ) 2 f(x) = (x - 1)^2 f(x)=(x1)2.

第五节 初等函数

  1. 基本初等函数
    • 常值函数 ( y = c y = c y=c)
    • 幂函数 ( y = x 2 y = x^2 y=x2)
    • 指数函数 ( y = a x y = a^x y=ax)
    • 对数函数 ( y = l o g a x y = log_ax y=logax)
    • 三角函数 ( { y = sin ⁡ x y = cos ⁡ x y = tan ⁡ x y = cot ⁡ x \begin{cases} y = \sin x \\ y = \cos x \\ y = \tan x \\ y = \cot x \\ \end{cases} y=sinxy=cosxy=tanxy=cotx)
    • 反三角函数 ( { y = arcsin ⁡ x y = arccos ⁡ x y = arctan ⁡ x y = a r c c o t   x \begin{cases} y = \arcsin x \\ y = \arccos x \\ y = \arctan x \\ y = arccot \ x \end{cases} y=arcsinxy=arccosxy=arctanxy=arccot x)(与对应的三角函数互为反函数)
  2. 初等函数
    由基本初等函数经过有限次四则运算和复合运算构成,并且在其定义域内具有统一的解析表达式的函数,称为初等函数.
  3. 非初等函数
    代表性的例子 : 分段函数

第六节 总结

第一章小结与要求

  • 22
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 《同济大学高等数学第七版》pdf目录如下: 第一章 函数的概念与基本性质 1.1 实数与函数 1.2 函数的概念与函数的表示 1.3 函数的运算与初等函数的性质 1.4 函数的图像与函数的性质 1.5 函数的单调性与单调函数的性质 1.6 函数的奇偶性与周期性 第二章 极限与连续 2.1 引例引言 2.2 数列极限的概念 2.3 无穷小量与无穷大量 2.4 数列极限的性质与判断准则 2.5 函数极限的概念与性质 2.6 间断点与连续函数的概念 2.7 连续函数的性质与判断准则 第三章 导数与微分 3.1 引例引言 3.2 导数的概念与性质 3.3 函数可导的判定与连续性 3.4 利用导数研究函数的性质 3.5 高阶导数与莱布尼茨公式 3.6 隐函数与参数方程导数的求法 3.7 微分的概念与性质 3.8 微分中值定理及其应用 第四章 微分中值定理与应用 4.1 辅助定理 4.2 高阶导数与函数的 Taylor 展开式 4.3 不等式与极值 4.4 曲线与曲率 4.5 渐近线与渐进行为 第五章 定积分与变限积分学 5.1 定积分的概念与性质 5.2 牛顿—莱布尼茨公式 5.3 反常积分 5.4 积分计算与应用 5.5 变限积分学及其应用 第六章 微分方程 6.1 微分方程的基本概念与解法 6.2 高阶线性微分方程 6.3 齐次线性微分方程 6.4 变量可分离的微分方程 6.5 齐次方程、一阶线性方程与伯努利方程 6.6 二阶线性常系数齐次方程 6.7 二阶线性非常系数齐次方程 第七章 空间解析几何 7.1 点、向量及其线性运算 7.2 点、直线与平面的垂直与平行关系 7.3 空间曲线及其切线与法平面 7.4 空间曲面及其切平面与法线 7.5 坐标变换与曲线的参数方程 7.6 空间解析几何的应用 以上是《同济大学高等数学第七版》pdf的目录,该书全面介绍了高等数学基本概念、性质和应用,适用于高等院校的数学专业课程,同时也可作为工科、理科相关专业学生的参考书。 ### 回答2: 同济大学高等数学第七版的PDF目录包含以下内容: 1. 前言:介绍了本教材的编写目的和思路,以及适用的读者群体,强调了数学学科的重要性和应用的广泛性。 2. 第一章函数与极限 介绍了函数的概念,包括初等函数和常用的数学符号表示。探讨了函数的极限及其性质,包括极限的定义、无穷小量、无穷大量等概念。 3. 第二章:导数与微分 讨论了导数的概念和性质,包括导函数、微分法则、高阶导数和隐函数求导等。介绍了利用导数来解决实际问题的方法,如最值问题、曲线的凹凸性和渐近线等。 4. 第三章:微分中值定理与导数的应用 介绍了微分中值定理及其应用,包括罗尔定理、拉格朗日中值定理和柯西中值定理等。讨论了利用导数来研究函数的单调性、极值和曲线的形态等问题。 5. 第四章:不定积分 探讨了不定积分的概念和性质,包括不定积分的定义、基本积分法和换元积分法等。介绍了一些特殊函数的积分计算方法。 6. 第五章:定积分及其应用 讨论了定积分的概念和性质,包括定积分的定义、定积分的基本性质和计算方法。介绍了利用定积分求解几何问题、物理问题和概率问题等应用。 7. 第六章:定积分的应用 继续讨论定积分的应用,包括曲线的弧长、旋转体的体积、质量和质心的计算等。介绍了利用定积分来解决实际问题的方法。 8. 第七章:微分方程 介绍了微分方程的概念和分类,包括常微分方程和偏微分方程。讨论了一阶和二阶线性常微分方程的解法,以及一些特殊微分方程的解法。 以上为同济大学高等数学第七版的PDF目录简要说明,这本教材全面而深入地介绍了高等数学各个主题的基本概念、原理和应用,适用于同济大学的高等数学课程及其他相关专业的学习者。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值