高等数学上册 第六章 定积分的应用 知识点总结

定积分的应用

定积分的元素法:如面积元素,为高f(x)与底dx的乘积能用定积分解决的问题特征:{ 非均匀连续分布在[a,b]上的量所求量对区间有可加性一般方法:{ 确定积分范围求积分  定积分的元素法:如面积元素,为高f(x)与底dx的乘积 \\ 能用定积分解决的问题特征: \begin{cases} 非均匀连续分布在[a,b]上的量 \\ 所求量对区间有可加性 \\ \end{cases} \\ 一般方法: \begin{cases} 确定积分范围 \\ 求积分 \\ \end{cases} \\ \,\\ 定积分的元素法:如面积元素,为高f(x)与底dx的乘积能用定积分解决的问题特征:{ 非均匀连续分布在[a,b]上的量所求量对区间有可加性一般方法:{ 确定积分范围求积分

问题分类

平面图形的面积

{ 直角坐标情形极坐标情形:S扇=12ρ2(θ)dθ \begin{cases} 直角坐标情形 \\ 极坐标情形:S_扇=\frac{1}{2}\rho ^2(\theta)d\theta \end{cases} \\ { 直角坐标情形极坐标情形:S=21ρ2(θ)dθ

旋转体的体积

{ 圆柱、圆锥、圆台、球,都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形体积元素dV=πf2(x)dx,则{ 绕x轴转:Vx=π∫abf2(x)dx绕y轴转:Vy=2π∫abxf(x)dx,看做是长方体的体积 \begin{cases} 圆柱、圆锥、圆台、球, 都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形 \\ 体积元素dV=\pi f^2(x)dx,则 \begin{cases} 绕x轴转:V_x=\pi \int_a^bf^2(x)dx \\ 绕y轴转:V_y=2\pi\int_a^bxf(x)dx,看做是长方体的体积 \end{cases} \end{cases} \\ 圆柱、圆锥、圆台、球,都可以看做是曲线f(x)x=ax=bx轴围成的曲边梯形体积元素dV=πf2(x)dx,则{ x轴转:Vx=πabf2(x)dxy轴转:Vy=2πab

【超级棒的算法改进】融合鱼鹰和柯西变异的麻雀优化算法研究(Matlab代码实现)内容概要:本文介绍了一种融合鱼鹰优化算法(BKA)和柯西变异策略的改进型麻雀搜索算法(SSA),旨在提升传统麻雀算法在全局搜索能力、收敛速度和避免陷入局部最优方面的性能。通过引入鱼鹰算法的捕食行为机制增强种群多样性,并结合柯西变异提高算法跳出局部极值的能力,从而构建出一种更为高效的混合优化算法OCSSA。该算法被成功应用于多个工程优化场景,如神经网络参数优化、微电网多目标调度、储能系统选址定容以及轴承故障诊断等领域,实验结果表明其在寻优精度和稳定性方面均优于多种经典和先进优化算法。此外,文中还配套提供了完整的Matlab代码实现,便于读者复现与扩展应用。; 适合人群:具备一定编程基础和优化算法背景,从事智能优化、机器学习、电力系统、信号处理等相关领域研究的研究生、科研人员及工程技术人员;熟悉Matlab语言并希望将智能算法应用于实际问题求解的开发者。; 使用场景及目标:①解决复杂非线性优化问题,如函数优化、参数调优、多目标调度等;②提升现有智能算法的搜索效率与鲁棒性,特别是在高维、多峰、约束优化问题中;③应用于神经网络训练、故障诊断、能源系统优化等实际工程项目中,实现更高精度的建模与预测。; 阅读建议:建议读者结合提供的Mat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沸腾的冰川

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值