高等数学上册 第六章 定积分的应用 知识点总结

定积分的应用

定积分的元素法:如面积元素,为高f(x)与底dx的乘积能用定积分解决的问题特征:{非均匀连续分布在[a,b]上的量所求量对区间有可加性一般方法:{确定积分范围求积分  定积分的元素法:如面积元素,为高f(x)与底dx的乘积 \\ 能用定积分解决的问题特征: \begin{cases} 非均匀连续分布在[a,b]上的量 \\ 所求量对区间有可加性 \\ \end{cases} \\ 一般方法: \begin{cases} 确定积分范围 \\ 求积分 \\ \end{cases} \\ \,\\ 定积分的元素法:如面积元素,为高f(x)与底dx的乘积能用定积分解决的问题特征:{非均匀连续分布在[a,b]上的量所求量对区间有可加性一般方法:{确定积分范围求积分

问题分类

平面图形的面积

{直角坐标情形极坐标情形:S扇=12ρ2(θ)dθ \begin{cases} 直角坐标情形 \\ 极坐标情形:S_扇=\frac{1}{2}\rho ^2(\theta)d\theta \end{cases} \\ {直角坐标情形极坐标情形:S=21ρ2(θ)dθ

旋转体的体积

{圆柱、圆锥、圆台、球,都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形体积元素dV=πf2(x)dx,则{绕x轴转:Vx=π∫abf2(x)dx绕y轴转:Vy=2π∫abxf(x)dx,看做是长方体的体积 \begin{cases} 圆柱、圆锥、圆台、球, 都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形 \\ 体积元素dV=\pi f^2(x)dx,则 \begin{cases} 绕x轴转:V_x=\pi \int_a^bf^2(x)dx \\ 绕y轴转:V_y=2\pi\int_a^bxf(x)dx,看做是长方体的体积 \end{cases} \end{cases} \\ 圆柱、圆锥、圆台、球,都可以看做是曲线f(x)x=ax=bx轴围成的曲边梯形体积元素dV=πf2(x)dx,则{x轴转:Vx=πabf2(x)dxy轴转:Vy=2πabxf(x)dx,看做是长方体的体积

函数平均值

f(x)在[a,b]上的平均值f‾=1b−a∫abf(x)dx f(x)在[a,b]上的平均值\overline{f}=\frac{1}{b-a}\int_a^bf(x)dx f(x)[a,b]上的平均值f=ba1abf(x)dx

平行截面面积为已知的立体的体积

dV=A(x)dx,A(x)为截面面积 dV=A(x)dx,A(x)为截面面积 dV=A(x)dxA(x)为截面面积

平面曲线的弧长

(1)设曲线弧由参数方程{x=φ(t)y=ψ(t)(α≤t≤β)在直角坐标系中,弧长微元ds=d2x+d2y=φ′2(t)+ψ′2(t)dt因此弧长s=∫αβφ′2(t)+ψ′2(t)dt (2)当曲线弧由直角坐标方程y=f(x)(a≤x≤b)给出,则化为对应的参数方程:{x=xy=f(x)(a≤x≤b)从而弧长s=∫ab1+y′2dx (3)当曲线弧由极坐标方程ρ=ρ(θ)(α≤θ≤β)给出,则化为对应的参数方程:{x=x(θ)=ρ(θ)cos⁡θy=y(θ)=ρ(θ)sin⁡θ(α≤θ≤β)从而弧长s=∫αβρ2(θ)+ρ′2(θ)dθ (1)设曲线弧由参数方程\begin{cases} x=\varphi(t) \\ y=\psi(t)\end{cases} (\alpha \le t \le \beta) \\ 在直角坐标系中,弧长微元ds=\sqrt{d^2x+d^2y}=\sqrt{\varphi'^2(t)+\psi'^2(t)}dt\\ 因此弧长s=\int_\alpha^\beta\sqrt{\varphi'^2(t)+\psi'^2(t)}dt \\ \,\\ (2)当曲线弧由直角坐标方程y=f(x)(a \le x \le b)给出,则化为对应的参数方程: \\ \begin{cases} x=x\\ y=f(x)\end{cases}(a \le x \le b) \\ 从而弧长s=\int_a^b\sqrt{1+y'^2}dx \\ \,\\ (3)当曲线弧由极坐标方程\rho=\rho(\theta) (\alpha \le \theta \le \beta)给出,则化为对应的参数方程: \\ \begin{cases} x=x(\theta)=\rho(\theta)\cos \theta\\ y=y(\theta)=\rho(\theta)\sin \theta\end{cases}(\alpha \le \theta \le \beta) \\ 从而弧长s=\int_\alpha^\beta\sqrt{\rho^2(\theta)+\rho'^2(\theta)}d\theta \\ 1)设曲线弧由参数方程{x=φ(t)y=ψ(t)(αtβ)在直角坐标系中,弧长微元ds=d2x+d2y=φ′2(t)+ψ′2(t)dt因此弧长s=αβφ′2(t)+ψ′2(t)dt2)当曲线弧由直角坐标方程y=f(x)(axb)给出,则化为对应的参数方程:{x=xy=f(x)(axb)从而弧长s=ab1+y′2dx3)当曲线弧由极坐标方程ρ=ρ(θ)(αθβ)给出,则化为对应的参数方程:{x=x(θ)=ρ(θ)cosθy=y(θ)=ρ(θ)sinθ(αθβ)从而弧长s=αβρ2(θ)+ρ′2(θ)dθ

旋转曲面面积(侧面积)

曲线f(x)绕x轴旋转一周所形成的的侧面的面积dS=2πf(x)⋅ds,ds是弧长微元 曲线f(x)绕x轴旋转一周所形成的的侧面的面积 \\ dS=2\pi f(x)\cdot ds,ds是弧长微元 曲线f(x)x轴旋转一周所形成的的侧面的面积dS=2πf(x)dsds是弧长微元

例题

(1)计算由x2a2+y2b2+z2c2=1所围成的椭球体的体积为了更直观一点,椭球体如下图1所示。设绿线为x轴,红线为y轴,蓝线为z轴下面计算y轴截面面积在其区间[−b,b]上的积分 由于截面是个椭圆,所以可以应用椭圆的面积公式πa1b1但这里的a1b1与椭圆体方程里的ab不同,如何求呢?在几何上可以看到,令x=0,a1=z=c1−y2b2令z=0,b1=x=a1−y2b2因此截面面积Sy=πa1b1=πac(1−y2b2)体积Vy=2∫0bSydy=43πabc 另外有一点值得注意,就该例来说,b!=a=c (1)计算由\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1所围成的椭球体的体积 \\ 为了更直观一点,椭球体如下图1所示。\\ 设绿线为x轴,红线为y轴,蓝线为z轴 \\ 下面计算y轴截面面积在其区间[-b,b]上的积分 \\ \,\\ 由于截面是个椭圆,所以可以应用椭圆的面积公式\pi a_1b_1 \\ 但这里的a_1b_1与椭圆体方程里的ab不同,如何求呢?\\ 在几何上可以看到,令x=0,a_1=z=c\sqrt{1-\frac{y^2}{b^2}} \\ 令z=0,b_1=x=a\sqrt{1-\frac{y^2}{b^2}} \\ 因此截面面积S_y=\pi a_1b_1=\pi ac(1-\frac{y^2}{b^2}) \\ 体积V_y=2\int_0^bS_ydy=\frac{4}{3}\pi abc \\ \,\\ 另外有一点值得注意,就该例来说,b!=a=c 1)计算由a2x2+b2y2+c2z2=1所围成的椭球体的体积为了更直观一点,椭球体如下图1所示。设绿线为x轴,红线为y轴,蓝线为z下面计算y轴截面面积在其区间[b,b]上的积分由于截面是个椭圆,所以可以应用椭圆的面积公式πa1b1但这里的a1b1与椭圆体方程里的ab不同,如何求呢?在几何上可以看到,令x=0a1=z=c1b2y2z=0b1=x=a1b2y2因此截面面积Sy=πa1b1=πac(1b2y2)体积Vy=20bSydy=34πabc另外有一点值得注意,就该例来说,b!=a=c
图1:椭球体
在这里插入图片描述

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在编程领域,排列和组合是两种重要的数学概念,被广泛应用于算法设计,尤其是在解决计数问题和遍历所有可能性时。C语言作为一种高效且底层的编程语言,常被用来实现这些算法,以提升效率和灵活性。接下来,我们将深入探讨如何使用C语言实现排列和组合算法。 排列是指有限集合中元素的一种有序排列方式。在C语言中,可以通过递归方法实现排列算法。核心思路是:对于当前位置,依次尝试将未使用的元素放置于此,并对剩余元素递归生成排列。当所有可能的元素都尝试过后,返回上一层,选择下一个未使用的元素。 组合则是不考虑顺序的元素集合。在C语言中,可以通过计算组合数或直接生成所有可能的组合来实现。组合数通常使用公式C(n, k) = n! / [k!(n-k)!]计算,其中n是总元素数量,k是选择的元素数量,!表示阶乘。生成组合可以采用回溯法,从第一个元素开始,依次选择k个元素。每一步有多个选择,但在回溯时需跳过已选择的元素。 通常情况下,实现这些算法的源代码会包含一个或多个函数,例如permute用于生成排列,combine用于生成组合。这些函数可能采用递归结构,也可能使用非递归的栈或队列来存储中间状态。此外,源代码还可能包含一些辅助函数,如检查元素是否已被使用、交换数组中的两个元素等。 为了更好地理解这些算法,需要仔细阅读并分析源代码,重点关注以下几个关键部分: 初始化:定义数组或数据结构来存储元素和已选择的元素。 递归函数:定义递归生成排列或组合的主函数。 回溯逻辑:在递归过程中,当无法继续生成新的排列或组合时,回溯到上一层。 循环和条件判断:控制元素的选择和回溯。 输出或统计:根据需求,将生成的排列或组合输出或进行计数。 学习C语言实现的排列组合算法,有助于理解递归思想,提升处理组合数学问题的能力,并在实际编程中
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

波波老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值