定积分的应用
定积分的元素法:如面积元素,为高f(x)与底dx的乘积能用定积分解决的问题特征:{非均匀连续分布在[a,b]上的量所求量对区间有可加性一般方法:{确定积分范围求积分 定积分的元素法:如面积元素,为高f(x)与底dx的乘积 \\ 能用定积分解决的问题特征: \begin{cases} 非均匀连续分布在[a,b]上的量 \\ 所求量对区间有可加性 \\ \end{cases} \\ 一般方法: \begin{cases} 确定积分范围 \\ 求积分 \\ \end{cases} \\ \,\\ 定积分的元素法:如面积元素,为高f(x)与底dx的乘积能用定积分解决的问题特征:{非均匀连续分布在[a,b]上的量所求量对区间有可加性一般方法:{确定积分范围求积分
问题分类
平面图形的面积
{直角坐标情形极坐标情形:S扇=12ρ2(θ)dθ \begin{cases} 直角坐标情形 \\ 极坐标情形:S_扇=\frac{1}{2}\rho ^2(\theta)d\theta \end{cases} \\ {直角坐标情形极坐标情形:S扇=21ρ2(θ)dθ
旋转体的体积
{圆柱、圆锥、圆台、球,都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形体积元素dV=πf2(x)dx,则{绕x轴转:Vx=π∫abf2(x)dx绕y轴转:Vy=2π∫abxf(x)dx,看做是长方体的体积 \begin{cases} 圆柱、圆锥、圆台、球, 都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形 \\ 体积元素dV=\pi f^2(x)dx,则 \begin{cases} 绕x轴转:V_x=\pi \int_a^bf^2(x)dx \\ 绕y轴转:V_y=2\pi\int_a^bxf(x)dx,看做是长方体的体积 \end{cases} \end{cases} \\ ⎩⎨⎧圆柱、圆锥、圆台、球,都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形体积元素dV=πf2(x)dx,则{绕x轴转:Vx=π∫abf2(x)dx绕y轴转:Vy=2π∫abxf(x)dx,看做是长方体的体积
函数平均值
f(x)在[a,b]上的平均值f‾=1b−a∫abf(x)dx f(x)在[a,b]上的平均值\overline{f}=\frac{1}{b-a}\int_a^bf(x)dx f(x)在[a,b]上的平均值f=b−a1∫abf(x)dx
平行截面面积为已知的立体的体积
dV=A(x)dx,A(x)为截面面积 dV=A(x)dx,A(x)为截面面积 dV=A(x)dx,A(x)为截面面积
平面曲线的弧长
(1)设曲线弧由参数方程{x=φ(t)y=ψ(t)(α≤t≤β)在直角坐标系中,弧长微元ds=d2x+d2y=φ′2(t)+ψ′2(t)dt因此弧长s=∫αβφ′2(t)+ψ′2(t)dt (2)当曲线弧由直角坐标方程y=f(x)(a≤x≤b)给出,则化为对应的参数方程:{x=xy=f(x)(a≤x≤b)从而弧长s=∫ab1+y′2dx (3)当曲线弧由极坐标方程ρ=ρ(θ)(α≤θ≤β)给出,则化为对应的参数方程:{x=x(θ)=ρ(θ)cosθy=y(θ)=ρ(θ)sinθ(α≤θ≤β)从而弧长s=∫αβρ2(θ)+ρ′2(θ)dθ (1)设曲线弧由参数方程\begin{cases} x=\varphi(t) \\ y=\psi(t)\end{cases} (\alpha \le t \le \beta) \\ 在直角坐标系中,弧长微元ds=\sqrt{d^2x+d^2y}=\sqrt{\varphi'^2(t)+\psi'^2(t)}dt\\ 因此弧长s=\int_\alpha^\beta\sqrt{\varphi'^2(t)+\psi'^2(t)}dt \\ \,\\ (2)当曲线弧由直角坐标方程y=f(x)(a \le x \le b)给出,则化为对应的参数方程: \\ \begin{cases} x=x\\ y=f(x)\end{cases}(a \le x \le b) \\ 从而弧长s=\int_a^b\sqrt{1+y'^2}dx \\ \,\\ (3)当曲线弧由极坐标方程\rho=\rho(\theta) (\alpha \le \theta \le \beta)给出,则化为对应的参数方程: \\ \begin{cases} x=x(\theta)=\rho(\theta)\cos \theta\\ y=y(\theta)=\rho(\theta)\sin \theta\end{cases}(\alpha \le \theta \le \beta) \\ 从而弧长s=\int_\alpha^\beta\sqrt{\rho^2(\theta)+\rho'^2(\theta)}d\theta \\ (1)设曲线弧由参数方程{x=φ(t)y=ψ(t)(α≤t≤β)在直角坐标系中,弧长微元ds=d2x+d2y=φ′2(t)+ψ′2(t)dt因此弧长s=∫αβφ′2(t)+ψ′2(t)dt(2)当曲线弧由直角坐标方程y=f(x)(a≤x≤b)给出,则化为对应的参数方程:{x=xy=f(x)(a≤x≤b)从而弧长s=∫ab1+y′2dx(3)当曲线弧由极坐标方程ρ=ρ(θ)(α≤θ≤β)给出,则化为对应的参数方程:{x=x(θ)=ρ(θ)cosθy=y(θ)=ρ(θ)sinθ(α≤θ≤β)从而弧长s=∫αβρ2(θ)+ρ′2(θ)dθ
旋转曲面面积(侧面积)
曲线f(x)绕x轴旋转一周所形成的的侧面的面积dS=2πf(x)⋅ds,ds是弧长微元 曲线f(x)绕x轴旋转一周所形成的的侧面的面积 \\ dS=2\pi f(x)\cdot ds,ds是弧长微元 曲线f(x)绕x轴旋转一周所形成的的侧面的面积dS=2πf(x)⋅ds,ds是弧长微元
例题
(1)计算由x2a2+y2b2+z2c2=1所围成的椭球体的体积为了更直观一点,椭球体如下图1所示。设绿线为x轴,红线为y轴,蓝线为z轴下面计算y轴截面面积在其区间[−b,b]上的积分 由于截面是个椭圆,所以可以应用椭圆的面积公式πa1b1但这里的a1b1与椭圆体方程里的ab不同,如何求呢?在几何上可以看到,令x=0,a1=z=c1−y2b2令z=0,b1=x=a1−y2b2因此截面面积Sy=πa1b1=πac(1−y2b2)体积Vy=2∫0bSydy=43πabc 另外有一点值得注意,就该例来说,b!=a=c
(1)计算由\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1所围成的椭球体的体积 \\
为了更直观一点,椭球体如下图1所示。\\
设绿线为x轴,红线为y轴,蓝线为z轴 \\
下面计算y轴截面面积在其区间[-b,b]上的积分 \\
\,\\
由于截面是个椭圆,所以可以应用椭圆的面积公式\pi a_1b_1 \\
但这里的a_1b_1与椭圆体方程里的ab不同,如何求呢?\\
在几何上可以看到,令x=0,a_1=z=c\sqrt{1-\frac{y^2}{b^2}} \\
令z=0,b_1=x=a\sqrt{1-\frac{y^2}{b^2}} \\
因此截面面积S_y=\pi a_1b_1=\pi ac(1-\frac{y^2}{b^2}) \\
体积V_y=2\int_0^bS_ydy=\frac{4}{3}\pi abc \\
\,\\
另外有一点值得注意,就该例来说,b!=a=c
(1)计算由a2x2+b2y2+c2z2=1所围成的椭球体的体积为了更直观一点,椭球体如下图1所示。设绿线为x轴,红线为y轴,蓝线为z轴下面计算y轴截面面积在其区间[−b,b]上的积分由于截面是个椭圆,所以可以应用椭圆的面积公式πa1b1但这里的a1b1与椭圆体方程里的ab不同,如何求呢?在几何上可以看到,令x=0,a1=z=c1−b2y2令z=0,b1=x=a1−b2y2因此截面面积Sy=πa1b1=πac(1−b2y2)体积Vy=2∫0bSydy=34πabc另外有一点值得注意,就该例来说,b!=a=c
图1:椭球体