定积分的应用
定积分的元素法:如面积元素,为高f(x)与底dx的乘积能用定积分解决的问题特征:{ 非均匀连续分布在[a,b]上的量所求量对区间有可加性一般方法:{ 确定积分范围求积分 定积分的元素法:如面积元素,为高f(x)与底dx的乘积 \\ 能用定积分解决的问题特征: \begin{cases} 非均匀连续分布在[a,b]上的量 \\ 所求量对区间有可加性 \\ \end{cases} \\ 一般方法: \begin{cases} 确定积分范围 \\ 求积分 \\ \end{cases} \\ \,\\ 定积分的元素法:如面积元素,为高f(x)与底dx的乘积能用定积分解决的问题特征:{ 非均匀连续分布在[a,b]上的量所求量对区间有可加性一般方法:{ 确定积分范围求积分
问题分类
平面图形的面积
{ 直角坐标情形极坐标情形:S扇=12ρ2(θ)dθ \begin{cases} 直角坐标情形 \\ 极坐标情形:S_扇=\frac{1}{2}\rho ^2(\theta)d\theta \end{cases} \\ { 直角坐标情形极坐标情形:S扇=21ρ2(θ)dθ
旋转体的体积
{ 圆柱、圆锥、圆台、球,都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形体积元素dV=πf2(x)dx,则{ 绕x轴转:Vx=π∫abf2(x)dx绕y轴转:Vy=2π∫abxf(x)dx,看做是长方体的体积 \begin{cases} 圆柱、圆锥、圆台、球, 都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形 \\ 体积元素dV=\pi f^2(x)dx,则 \begin{cases} 绕x轴转:V_x=\pi \int_a^bf^2(x)dx \\ 绕y轴转:V_y=2\pi\int_a^bxf(x)dx,看做是长方体的体积 \end{cases} \end{cases} \\ ⎩ ⎨ ⎧圆柱、圆锥、圆台、球,都可以看做是曲线f(x)、x=a、x=b、x轴围成的曲边梯形体积元素dV=πf2(x)dx,则{ 绕x轴转:Vx=π∫abf2(x)dx绕y轴转:Vy=2π∫ab

最低0.47元/天 解锁文章
760

被折叠的 条评论
为什么被折叠?



