MIT 18.02 多变量微积分总结(Part I)

本文详细总结了MIT的18.02多变量微积分课程,涵盖点积的代数和几何观点、投影、叉积、平面方程、线性系统、二阶导数判别法、全微分与链式法则、梯度与方向导数、拉格朗日乘子法等内容,深入探讨了向量、平面、体积、约束条件下的最优化问题等核心概念。
摘要由CSDN通过智能技术生成

引言

这篇文章是对 Multivariable Calculus 课程的知识点总结。

Dot Product

Because the dot product results in a scalar, it is also called the scalar product.

algebraic view of dot product

给定两个向量 a⃗ =a1,a2,a3 b⃗ =b1,b2,b3 ,它们的点积定义如下:

a⃗ b⃗ =a1b1+a2b2+a3b3

properties of dot product

下面属性的证明大部分都是一些代数计算,根据点积的 algebraic view,你可以很轻松地证明出来。

properties of dot product

geometric view of dot product

下面定理用 The Law of Cosines 来证明,详细步骤参考:Dot Product

a⃗ b⃗ =|a⃗ ||b⃗ |cos(θ)

这个公式通常不是用来计算点积,而是找出2个向量之间的角。有了这个公式,点积可以让我们很容易地判断出2个向量是否 perpendicular or parallel. (When two vectors are perpendicular to each other we say they are orthogonal.)

Now, if two vectors are orthogonal then we know that the angle between them is 90 degrees:

a⃗ b⃗ =0

Likewise, if two vectors are parallel then the angle between them is either 0 degrees (pointing in the same direction) or 180 degrees (pointing in the opposite direction):

a⃗ b⃗ =|a⃗ ||b⃗ |  (θ=0)a⃗ b⃗ =|a⃗ ||b⃗ |  (θ=180)

Projections

下面2幅图是 the projection of b⃗  onto a⃗  , denoted by proja⃗ b⃗ 

projection

projection

There is an nice formula for finding the projection of b⃗  onto a⃗  . Here it is,

proja⃗ b⃗ =a⃗ b⃗ |a⃗ |2a⃗ 

Note that we also need to be very careful with notation here. The projection of a⃗  onto b⃗  is given by:

projb⃗ a⃗ =a⃗ b⃗ |b⃗ |2b⃗ 

Cross Product

We should note that the cross product requires both of the vectors to be three dimensional vectors. The result of a dot product is a number and the result of a cross product is a vector!

Area and Determinants

下图中是第一种求三角形面积的方式。

Area

我们知道点积中的公式是 cosθ ,而上图中是 sinθ ,那么如何转化一下它们呢?下图中的方法实现了转化,图中错误的部分我用红线标出了。它的主要思想如下:

1、把向量 A⃗  旋转90度,因此得到了 sinθ=cosθ
2、由于是旋转,所以向量 A⃗  的长度不变
3、通过旋转,我们得到了 A,θ,B ,可以应用点积公式了

Area

上图中的最终结果实际上就是 a1b2a2b1=det(A⃗ ,B⃗ )=a1b1a2b2 ,如果你想用 determinant 求面积,你需要加上绝对值,由于面积始终为正的。还有一点就是,determinant 的绝对值是平行四边形的面积,三角形应该乘以1/2

cross product 的定义

下图中是2个向量的 cross product 的定义:

cross product

下图中是关于 cross product 的方向与长度的定理:

cross product

关于 cross product 还有2个知识点:

1、 A⃗ ×B⃗ =(B⃗ ×A⃗ )
2、根据1,可得 A⃗ ×A⃗ =0

Volumes and Determinants

determinant 同样可以求体积:

Volumes and Determinants

下图中是用另一种方法来求体积,如果你一直算下去,你会发现它实际上就是 determinant,即: A⃗ (B⃗ ×C⃗ )=det(A⃗ ,B⃗ ,C⃗ )

Volumes and Determinants

Equations of Planes

如下图所示,已知平面上的3个点,求出表示平面的方程。在上面我们已经知道 determinant 可以求体积,而平面的体积为0,所以有下图中的公式求平面方程。

Equations of Planes

我们还用上面的图形,第二种方式求解方式: P1P(P1P2×P1P3)=0 ,你会发现它实际上就是 determinant


一个平面的公式形式为: ax+by+cz=d ,当我们知道了一个平面的 normal vector 以后,就可以确定无数多个平行的平面,如果再给出平面经过哪个点以后,就可以确定一个具体的平面了。

下图是一个具体的例子,它的 normal vector 为 N⃗ =1,5,10 ,并且通过 P0=(2,1,1) ,用点积就可以求出平面的方程了。

Equations of Planes

  • 7
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值