Single Variable Calculus 总结

引言

这篇文章是对 MIT Single Variable Calculus 这个课程的知识点总结。在这个课程中,我遇到一些问题涉及到先前高中学过的知识,同时也有一些比较难理解的或容易混淆的概念,因此我把找到的这些资料链接列在下面(这些资料弥补了我先前忘记的知识,并且加深了对课程内容的理解,非常有帮助):

What is a Function?
Even and Odd Functions
Function Transformations
Inverse function
In what sense is the derivative the “best” linear approximation?
Inflection points introduction
Continuous versus differentiable
How to Detrmine when Limits Don’t Exist
Prove that the derivative of an even differentiable function is odd, and the derivative of an odd is even

limit and continuity

下面是 continuous 的定义:

A function f is continuous at x0 if limxx0f(x)=f(x0)

如果一个函数在 x0 处是 continuous 的,那么从下面的定义中,我们可以得出以下3个属性:

  1. limxx+0f(x)=limxx0f(x)
  2. f(x0) is defined
  3. limxx+0f(x)=limxx0f(x)=f(x0)

下面中的链接是关于 limit 的一些属性,和证明这些属性为什么是正确的。

Limit Properties

Proof of Limit Properties

下面我们来证明一个定理,定理的内容如下:

If f is differentiable at x0 , then f is continuous at x0

如果 f is continuous at x0 ,我们有 limxx0f(x)=f(x0) ,因此我们只需要证明,当函数 f x0 处可导,这个等式是成立的。整个证明过程如下图:

Differentiable Implies Continuous

sin 与 cos 导数的证明

在这个 lecture 中,David Jerison 教授讲解了 sin 与 cos 函数导数的代数与几何证明,在具体证明之前,让我们首先求出2个极限的解,它们分别是:

limΔx0.cosΔx1Δx=0limΔx0.sinΔxΔx=1

我们首先来证明第2个极限,下图是个单位圆,角度 θ is described in radians but NOT when it is measured in degrees.

sin 与 cos 导数的证明

把第2个极限中的 Δx θ 替换,我们可以看出当 θ 无限接近于0时, sinθ 与 arc length(即 θ )无限接近,因此我们可以总结出:

limx0.sinxx=1

接下来让我们来求第1个极限,下图来自于单位圆的一部分,我们可以看出当 θ 无限接近于0时, 1cosθ 无限接近接近于0,因此我们可以总结出:

limx0.cosx1x=0

sin 与 cos 导数的证明

上面的几何证明过程中,有2个重点我需要解释一下:

1、在MIT的课堂上,我看到很多同学会问到:当 θ 无限接近于0时, 1cosθ 无限接近接近于0,同时 arc length 不也接近于0吗?这里我们忽略了一个重点,就是 1cosθ 接近于0的速度要比  theta 接近于0的速度快很多。

2、上面极限中的角度全是以弧度来描述的,如果你以度数来描述,则上面的结论不成立,因此当我们对 sinxcosx 求导时,这些 x 所指的一定要是弧度。

至此,我们已经求出了上面的2个极限。现在,只需要一些代数 tricks 就可以证明出 sinxcosx 的枯导数,这里我就不介绍了,MIT 给的课程资料上有详细的步骤,下面是资料的链接:

Derivative of sinx

Derivative of cosx

下面我们来用几何的方式去证明 sinx 的导数,导数本身想表达的就是 the rate of change,即 ratio,现在我们来看一看 y=sinθ ,当 θ 增加 Δθ 时, Δy 是多少?

sin 与 cos 导数的证明

下图是个单位圆,当角度增加 Δθ 时, y 如何变化呢?我们可以把上图中的弧 PQ 单独拿出来,如下图:

sin 与 cos 导数的证明

Δθ 无限小时,我们可以把弧 PQ 近似成上图的绿线,由于 Δθ = 弧 PQ ,所以直线 QP 约等于 Δθ ,现在最重要的就是我们要如何求出角 QPR ,其实它就是 θ ,因此我们可以得出:

ΔyΔθ=cosθ

General Strategy for Curve Sketching

在这个 lecture 中, Jerison 教授介绍了一个通用的策略去大致描绘出函数图像,下面的链接中给出了具体的步骤,如果步骤1和2中的点很难找出,你可以直接跳到第3步。

描绘函数图像

函数的平均值

想必你已经知道如何求解一个离散集合的平均值,比如: a1,a2,,an ,那么它的平均值定义如下:

aavg=a1+a2++ann

那么现在,我想求出下图中函数在区间 [a,b] 的平均值,我们怎样做到这点呢?

函数的平均值

我们目前虽然不知道如何去求连续函数在某一区间的平均值,但是我们会求一个离散集合的平均值,因此我们可以通过这个方法来粗略估计出上图所示函数的平均值,过程如下:

1、Split [a,b] into subintervals width Δx=ban

2、Pick a point xi in each subinterval

3、Average just the f(xi)

Averagef(x1)+f(x2)++f(xn)n

随着 n 逐渐增大,上面估算出的平均值将会越接近真正的平均值,感觉有点像积分呢!别要着急,好戏还在后面。

4、把上面的公式中的分子与分母都乖上 Δx

Average(f(x1)+f(x2)++f(xn))Δ
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值