概要
传统的广度优先策略能够找到最优的路径,但是在搜索空间非常大的情况下,内存占用是指数级增长,很容易造成内存溢出,因此提出了beam search的算法。
beam search尝试在广度优先基础上进行进行搜索空间的优化(类似于剪枝)达到减少内存消耗的目的。
Beam Search算法
新的概念
- 为了达到搜索的目的,beam search 引入了启发函数的概念(
h
) 来估计从当前节点到目标节点的损失。
启发函数可以使搜索算法只保存能够到达目标节点的节点 - beam width
B 每一层(each level)广度优先搜索算法保存的节点数目。
可以防止程序内存溢出,并加快搜索速度。 - BEAM 作用类似于open list,用于保存下一轮扩展的节点
- SET 保存BEAM中的所有的后续节点,是启发函数的输入空间。
- a hash table 作用类似于close list,用于保存所有已经访问过的节点
算法流程
- 将开始节点(start)增加到BEAM和hash table
- 循环遍历BEAM的所有后续节点增加到SET中,并清空BEAM
- 从SET中选择 B 个启发函数值最优的节点增加到BEAM及hash table中(已经存在hash table中的节点不能增加)
- 以上过程循环持续进行指导找到目标节点或hash table 满了或主循环结束后BEAM为空(没有找到解)
伪代码
/* initialization */
g = 0;
hash_table = { start };
BEAM = { start };
/* main loop */
while(BEAM ≠ ∅){ // loop until the BEAM contains no nodes
SET = ∅; // the empty set
/* generate the SET nodes */
for(each state in BEAM){
for(each successor of state){
if(successor == goal) return g + 1;
SET = SET ∪ { successor }; // add successor to SET
}
}
BEAM = ∅; // the empty set
g = g + 1;
/* fill the BEAM for the next loop */
while((SET ≠ ∅) AND (B > |BEAM|)){ // set is not empty and the number of nodes in BEAM is less than B
state = successor in SET with smallest h value;
SET = SET \ { state }; // remove state from SET
if(state ∉ hash_table){ // state is not in the hash_table
if(hash_table is full) return ∞;
hash_table = hash_table ∪ { state }; // add state to hash_table
BEAM = BEAM ∪ { state }; // add state to BEAM
}
}
}
// goal was not found, and BEAM is empty - Beam Search failed to find the goal
return ∞;
beam search example
说明
一下样例都是用两行代表一次主循环执行过程。
两行中的第一行显示增加到SET中的nodes(字母顺序)
第二行显示的是从SET中增加到BEAM中的节点
两行后都有一个hash table显示其状态(hash table 只有7slots,表示可用内存的大小)
以下每一个例子对
beamsearch 目标是从I-> B
搜索的图
exmple 1 B = 1,展示Beam search 的不足,找不到解
loop number | SET,BEAM | hash table |
---|---|---|
BEAM={I} | hash table={I} | |
1 | SET={G,J,E,H} | hashtable={I} |
1 | BEAM={G} | hash table={I,G} |
2 | SET={D,G,I} | hashtable={I,G} |
2 | BEAM={D} | hash table={I,D,G} |
3 | SET={G} | hashtable={I,D,G} |
3 | BEAM={} | hash table={I,D,G} |
此时BEAM 为空,导致搜索失败。
因此
exmple 2 B = 2 搜索到非最优值
loop number | SET,BEAM | hash table |
---|---|---|
BEAM={I} | hash_table = { , I(null), , , , , } | |
1 | SET={G(I), J(I), E(I), H(I)} | hash_table = { , I(null), , , , , } |
1 | BEAM={ G(I), J(I) } | hash_table = { , I(null), J(I), , , , G(I) } |
2 | SET={A(J), D(G), G(J), J(G), E(J), I(G)} | hash_table = { , I(null), J(I), , , , G(I) } |
2 | BEAM={A(J), D(G)} | hash_table = { A(J), I(null), J(I), D(G), , , G(I) } |
3 | SET={C(A), G(D), J(A)} | hash_table = { A(J), I(null), J(I), D(G), , , G(I) } |
3 | BEAM={C(A)} | hash_table = { A(J), I(null), J(I), D(G), C(A), _, G(I) } |
4 | SET = { B(C) [goal found - algorithm returns], A(C) } | hash_table = { A(J), I(null), J(I), D(G), C(A), _, G(I) } |
此例中 beam search 搜索到了一个路径:IJACB,但不是最优解(IECB)
展示了并不是每次循环BEAM都能被填充满(step 3)
exmple 3 B = 3,找到最优值,并且内存没有溢出
loop number | SET,BEAM | hash table |
---|---|---|
BEAM={I} | hash_table = { , I(null), , , , , } | |
1 | SET={G(I), J(I), E(I), H(I)} | hash_table = { , I(null), , , , , } |
1 | BEAM = { G(I), J(I), E(I) } | hash_table = { , I(null), J(I), , E(I), _, G(I) } |
2 | SET = { A(J), C(E), D(G), F(E), G(J), J(E), E(J), H(E), I(E) } | hash_table = { , I(null), J(I), , E(I), _, G(I) } |
2 | BEAM = { A(J), C(E), D(G) } | hash_table = { A(J), I(null), J(I), C(E), E(I), D(G), G(I) } |
3 | SET = { B(C) [goal found - algorithm returns], A(C), C(A), J(A) } | hash_table = { A(J), I(null), J(I), C(E), E(I), D(G), G(I) } |
B =3 beam search可以找到最优值,但是当B更大时,会造成可用内存溢出(hash table 溢出)
exmple 4 B = 4 内存占用过多
loop number | SET,BEAM | hash table |
---|---|---|
BEAM={I} | hash_table = { , I(null), , , , , } | |
1 | SET={G(I), J(I), E(I), H(I)} | hash_table = { , I(null), , , , , } |
1 | BEAM = { G(I), J(I), E(I), H(I) } | hash_table = { H(I), I(null), J(I), , E(I), , G(I) } |
2 | SET = { A(J), C(E), D(G), F(E), G(J), J(E), E(H), H(E), I(E) } | hash_table = { H(I), I(null), J(I), , E(I), , G(I) } |
2 | BEAM = { A(J), C(E), D(G) [not enough memory - algorithm returns] } | hash_table = { H(I), I(null), J(I), A(J), E(I), C(E), G(I) } |
第二步时造成内存溢出,搜索失败。
参考资料
http://jhave.org/algorithms/graphs/beamsearch/beamsearch.shtml