**安装cudnn前先要确保cuda和NVIDIA驱动已正确安装,关于如何安装cuda可参考
http://blog.csdn.net/xll_bit/article/details/78304722
1,cudnn下载:
**需要注册登录NVIDIA账户**
https://developer.nvidia.com/rdp/cudnn-download
选择系统以及cuda对应的cudnn版本
2,安装
可参考NVIDIA官方说明cuDNN Install Guide点击打开链接
根据下载的安装文件不同,有tar和deb两种安装途径
(一般来说tar安装比较简单,操作方便,但tar安装完没有示例程序,若需要示例程序需要下载安装libcudnn7-doc_7.0.3.11-1+cuda9.0_amd64.deb,具体参见deb安装c步骤)
首先切换到cudnn下载目录
一,tar安装
a,解压tar文件
$ tar -xzvf cudnn-9.0-linux-x64-v7.tgz
b,复制所需文件到系统相应位置
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
二,deb安装
a,安装runtime library
sudo dpkg -i libcudnn7_7.0.3.11-1+cuda9.0_amd64.deb
b,安装developer library
sudo dpkg -i libcudnn7-dev_7.0.3.11-1+cuda9.0_amd64.deb
c,安装code samples and the cuDNN Library User Guide
sudo dpkg -i libcudnn7-doc_7.0.3.11-1+cuda9.0_amd64.deb
3,验证
a,拷贝示例代码到任意可写路径
$cp -r /usr/src/cudnn_samples_v7/ .
b,进入cudnn_samples_v7相应目录
$ cd cudnn_samples_v7/mnistCUDNN
c,编译
$make clean &&& make
d.运行
$ ./mnistCUDNN
注:RNN验证同上,但RNN需要自己设置参数
./RNN <seqLength> <numLayers> <hiddenSize> <miniBatch> <mode>
Modes: 0 = RNN_RELU, 1 = RNN_TANH, 2 = LSTM, 3 = GRU
eg: $ ./RNN 20 2 512 64 1
e.结果
对于mnistCUDNN验证若出现
Test passed!
则说明验证通过
对于RNN验证通过会出现一些测试结果eg:
Forward: 185 GFLOPS
Backward: 332 GFLOPS, (198 GFLOPS), (1042 GFLOPS)
i checksum 9.653668E+05 h checksum 9.653668E+05
di checksum 6.811462E+00 dh checksum 6.811462E+00
dw checksum 2.659683E+07