数据整体服从正态分布,那样本均值和方差则相互独立。正太分布具有很多好的性质,很多模型假设数据服从正态分布。例如线性回归(linear regression),它假设误差服从正态分布,从而每个样本点出现的概率就可以表示成正态分布的形式,将多个样本点连乘再取对数,就是所有训练集样本出现的条件概率,最大化这个条件概率就是LR要最终求解的问题。这里这个条件概率的最终表达式的形式就是我们熟悉的误差平方和。
ML中很多model都假设数据或参数服从正态分布,但是如果数据不服从正态分布怎么办?搜罗到这篇文章:http://udel.edu/~mcdonald/stattransform.html,是关于处理生物领域数据的handbook,很不错,里面用data transformations 方式来解决数据分布的这个问题。这里列举两种,有兴趣的可以看链接文章或继续搜索文章来研究。(希望哪个网友搜罗到好文章也给俺分享下)
data transformations步骤如下,
(1)首先根据数据样本画出均值和方差曲线
(2)如果均值和方差不相关,则不需要转换
(3)如果方差正比于均值,则进行square root transformation转换
(4)如果标准差正比于均值,则进行logarithmic transformation转换
ML中很多model都假设数据或参数服从正态分布,但是如果数据不服从正态分布怎么办?搜罗到这篇文章:http://udel.edu/~mcdonald/stattransform.html,是关于处理生物领域数据的handbook,很不错,里面用data transformations 方式来解决数据分布的这个问题。这里列举两种,有兴趣的可以看链接文章或继续搜索文章来研究。(希望哪个网友搜罗到好文章也给俺分享下)
data transformations步骤如下,
(1)首先根据数据样本画出均值和方差曲线
(2)如果均值和方差不相关,则不需要转换
(3)如果方差正比于均值,则进行square root transformation转换
(4)如果标准差正比于均值,则进行logarithmic transformation转换