采用最小二乘法进行线性回归时,需要满足特定的条件:
正态性:一定范围内,给定任意x值,对应的y均服从正态分布
独立:即误差项间不存在相关,一般时间序列数据会存在自相关
线性:因变量和自变量有线性关系
同方差性:即模型误差项的方差相等。
这些假设都与误差项有关,所以我们可以从误差的估计量残差来解决,即我们常用到的残差分析、残差图等。残差图就是以某种残差(残差、标准化残差、学生化残差等)为纵坐标,以任何其他的量为横轴的散点图,如果数据能较好满足回归条件,那么残差图会是一个在水平线周围随机均匀分布的散点图。另外我们也可通过假设检验的手段进行回归诊断。
残差图诊断
1.正态性:如果满足此条件,那么残差值将服从正态分布。可以采用残差的qq图来判断
2.线性:可以采用残差和预测值散点图,如果满足线性,那么残差值与预测值没有任何关联。
3.同方差性:可以看学生化残差图和预测值的散点图,如果满足同方差性假设,那么散点大致落在±2的区域,且不呈任何趋势。
对于回归中的残差诊断图,SAS程序会自动生成并展示在结果里。
假设检验诊断:
正太性:可以输出残差,使用univariate过程步进行正态检验。或者使用transreg过程box-cox转换方法
同方差性:SAS里提供white检验和bp法。
线性:可以使用网上的boxTdiwell变换的宏程序。该宏的运行还需使用另外一个gskip宏程序才能运行。两个宏程序下载地址:
boxTdiwell:http://www.data

本文介绍了在SAS中进行线性回归分析时,如何通过残差图和假设检验来诊断模型是否满足正态性、线性和同方差性的条件。通过残差的QQ图、残差与预测值散点图以及学生化残差图等,检查数据是否符合回归条件。此外,还提供了SAS的正态性检验、同方差性检验及线性检验的程序示例,以及利用R软件进行进一步诊断的方法。
最低0.47元/天 解锁文章
2790

被折叠的 条评论
为什么被折叠?



